55 research outputs found

    Prenatal particulate air pollution and DNA methylation in newborns: An epigenome-wide meta-analysis

    Get PDF
    BACKGROUND: Prenatal exposure to air pollution has been associated with childhood respiratory disease and other adverse outcomes. Epigenetics is a suggested link between exposures and health outcomes. OBJECTIVES: We aimed to investigate associations between prenatal exposure to particulate matter (PM) with diameter <10 (PM)or<2:5 lm (PM) and DNA methylation in newborns and children. METHODS: We meta-analyzed associations between exposure to PM (n = 1,949) and PM (n = 1,551) at maternal home addresses during pregnancy and newborn DNA methylation assessed by Illumina Infinium HumanMethylation450K BeadChip in nine European and American studies, with replication in 688 independent newborns and look-up analyses in 2,118 older children. We used two approaches, one focusing on single cytosine-phosphate-guanine (CpG) sites and another on differentially methylated regions (DMRs). We also related PM exposures to blood mRNA expression. RESULTS: Six CpGs were significantly associated [false discovery rate (FDR) <0:05] with prenatal PM and 14 with PM exposure. Two of the PM-related CpGs mapped to FAM13A (cg00905156) and NOTCH4 (cg06849931) previously associated with lung function and asthma. Although these associations did not replicate in the smaller newborn sample, both CpGs were significant (p <0:05) in 7-to 9-y-olds. For cg06849931, however, the direction of the association was inconsistent. Concurrent PM exposure was associated with a significantly higher NOTCH4 expression at age 16 y. We also identified several DMRs associated with either prenatal PM and or PM exposure, of which two PM-related DMRs, including H19 and MARCH11, replicated in newborns. CONCLUSIONS: Several differentially methylated CpGs and DMRs associated with prenatal PM exposure were identified in newborns, with annotation to genes previously implicated in lung-related outcomes. https://doi.org/10.1289/EHP4522

    Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age

    Get PDF
    Background Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal and later life. As the epigenome is known to have an important role during fetal development, we investigated associations between gestational age and blood DNA methylation in children. Methods We performed meta-analysis of Illumina's HumanMethylation450-array associations between gestational age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications, induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at 4-18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects: fetal brain and lung. Results We identified 8899 CpGs in cord blood that were associated with gestational age (range 27-42 weeks), at Bonferroni significance, P <1.06 x 10(- 7), of which 3343 were novel. These were annotated to 4966 genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for biological processes critical to embryonic development. Follow-up of identified genes showed correlations between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with expression levels. Conclusions We identified numerous CpGs differentially methylated in relation to gestational age at birth that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding mechanisms linking gestational age to health effects.Peer reviewe

    Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking.

    Get PDF
    Aim: Cigarette smoking influences DNA methylation genome wide, in newborns from pregnancy exposure and in adults from personal smoking. Whether a unique methylation signature exists for in utero exposure in newborns is unknown. Materials & methods: We separately meta-analyzed newborn blood DNA methylation (assessed using Illumina450k Beadchip), in relation to sustained maternal smoking during pregnancy (9 cohorts, 5648 newborns, 897 exposed) and adult blood methylation and personal smoking (16 cohorts, 15907 participants, 2433 current smokers). Results & conclusion: Comparing meta-analyses, we identified numerous signatures specific to newborns along with many shared between newborns and adults. Unique smoking-associated genes in newborns were enriched in xenobiotic metabolism pathways. Our findings may provide insights into specific health impacts of prenatal exposure on offspring

    Prenatal Particulate Air Pollution and DNA Methylation in Newborns: An Epigenome-Wide Meta-Analysis

    Get PDF
    BACKGROUND: Prenatal exposure to air pollution has been associated with childhood respiratory disease and other adverse outcomes. Epigenetics is a suggested link between exposures and health outcomes. OBJECTIVES: We aimed to investigate associations between prenatal exposure to particulate matter (PM) with diameter [Formula: see text] ([Formula: see text]) or [Formula: see text] ([Formula: see text]) and DNA methylation in newborns and children. METHODS: We meta-analyzed associations between exposure to [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) at maternal home addresses during pregnancy and newborn DNA methylation assessed by Illumina Infinium HumanMethylation450K BeadChip in nine European and American studies, with replication in 688 independent newborns and look-up analyses in 2,118 older children. We used two approaches, one focusing on single cytosine-phosphate-guanine (CpG) sites and another on differentially methylated regions (DMRs). We also related PM exposures to blood mRNA expression. RESULTS: Six CpGs were significantly associ

    LE PUBBLICAZIONI SCIENTIFICHE PRODOTTE CON IL CONTRIBUTO DEL CASPUR NEL 2011

    No full text
    Le pubblicazioni scientifiche prodotte con il contributo del CASPUR nel Triennio 2007-2009

    Le pubblicazioni scientifiche prodotte con il contributo del CASPUR nel 2010

    No full text
    Seguono le pubblicazioni scientifiche prodotte con il contributo del CASPUR nell'anno 2010

    Photodissociation and radiative association of interstellar molecules

    No full text
    PARIS-BIUSJ-ThĂšses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Low-energy positron scattering from gas-phase uracil THE EUROPEAN PHYSICAL JOURNAL D Low-energy positron scattering from gas-phase uracil

    No full text
    Abstract. Quantum scattering calculations are presented for the interaction of low energy positrons with the uracil molecule, an important component of biological systems. The rotational elastic and inelastic cross sections and vibrational inelastic cross sections are reported and compared with existing experiments, indicating a general trend of the cross sections different from the experimental findings and in line with what should be expected from the behavior of the total cross sections in similar polar targets. Some specific considerations can be drawn on the reliability of existing experiments, as to their size vis-Ă -vis to the computed integral cross sections over the same range of energies
    • 

    corecore