752 research outputs found

    Interactions of lipid monolayers with the natural biopolymer hyaluronic acid

    Get PDF
    AbstractThe interaction of the natural mucopolysaccharide hyaluronic acid with different lipids, present in the natural membranes, was studied at the lipid/water interface using thermodynamic methods and X-ray diffraction. The results show that this biopolymer modifies the properties and the structure of the lipid monolayer. The two-dimensional crystalline lattice and domain structure of the charged octadecylamine monolayer are strongly disturbed by the hyaluronic acid, the monolayer compressibility increases and the monolayer collapse pressure drops down. In addition, the presence of charged lipid interfaces influences the structural organisation of the hyaluronic acid at the membrane/water interfaces. The impacts of these results on the structural organisation at the membrane interface are discussed

    Electronic correlation effects and the Coulomb gap at finite temperature

    Full text link
    We have investigated the effect of the long-range Coulomb interaction on the one-particle excitation spectrum of n-type Germanium, using tunneling spectroscopy on mechanically controllable break junctions. The tunnel conductance was measured as a function of energy and temperature. At low temperatures, the spectra reveal a minimum at zero bias voltage due to the Coulomb gap. In the temperature range above 1 K the Coulomb gap is filled by thermal excitations. This behavior is reflected in the temperature dependence of the variable-range hopping resitivity measured on the same samples: Up to a few degrees Kelvin the Efros-Shkovskii lnRāˆTāˆ’1/2R \propto T^{-1/2} law is obeyed, whereas at higher temperatures deviations from this law are observed, indicating a cross-over to Mott's lnRāˆTāˆ’1/4R \propto T^{-1/4} law. The mechanism of this cross-over is different from that considered previously in the literature.Comment: 3 pages, 3 figure

    Influence of trigonal warping on interference effects in bilayer graphene

    Get PDF
    Bilayer graphene (two coupled graphitic monolayers arranged according to Bernal stacking) is a two-dimensional gapless semiconductor with a peculiar electronic spectrum different from the Dirac spectrum in the monolayer material. In particular, the electronic Fermi line in each of its valleys has a strong p -> -p asymmetry due to trigonal warping, which suppresses the weak localization effect. We show that weak localization in bilayer graphene may be present only in devices with pronounced intervalley scattering, and we evaluate the corresponding magnetoresistance

    Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths

    Get PDF
    Author Posting. Ā© The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 75 (2011): 5247-5268, doi:10.1016/j.gca.2011.06.026.We present whole rock Li and Mg isotope analyses of 33 ultramafic xenoliths from the terrestrial mantle, which we compare with analyses of 30 (mostly chondritic) meteorites. The accuracy of our new Mg isotope ratio measurement protocol is substantiated by a combination of standard addition experiments, the absence of mass independent effects in terrestrial samples and our obtaining identical values for rock standards using 2 different separation chemistries and 3 different mass-spectrometric introduction systems. Carbonaceous, ordinary and enstatite chondrites have irresolvable mean stable Mg isotopic compositions (Ī“25Mg = -0.14 Ā± 0.06; Ī“26Mg = - 0.27 Ā± 0.12ā€°, 2sd), but our enstatite chondrite samples have lighter Ī“7Li (by up to ~3ā€°) than our mean carbonaceous and ordinary chondrites (3.0 Ā± 1.5ā€°, 2sd), possibly as a result of spallation in the early solar system. Measurements of equilibrated, fertile peridotites give mean values of Ī“7Li = 3.5 Ā± 0.5ā€°, Ī“25Mg = -0.10 Ā± 0.03ā€° and Ī“26Mg = -0.21 Ā± 0.07ā€°. We believe these values provide a useful estimate of the primitive mantle and they are within error of our average of bulk carbonaceous and ordinary chondrites. A fuller range of fresh, terrestrial, ultramafic samples, covering a variety of geological histories, show a broad positive correlation between bulk Ī“7Li and Ī“26Mg, which vary from -3.7 to +14.5ā€°, and -0.36 to +0.06ā€°, respectively. Values of Ī“7Li and Ī“26Mg lower than our estimate of primitive mantle are strongly linked to kinetic isotope fractionation, occurring during transport of the mantle xenoliths. We suggest Mg and Li diffusion into the xenoliths is coupled to H loss from nominally anhydrous minerals following degassing. Diffusion models suggest that the co-variation of Mg and Li isotopes requires comparable diffusivities of Li and Mg in olivine. The isotopically lightest samples require ~5-10 years of diffusive ingress, which we interpret as a time since volatile loss in the host magma. Xenoliths erupted in pyroclastic flows appear to have retained their mantle isotope ratios, likely as a result of little prior degassing in these explosive events. High Ī“7Li, coupled with high [Li], in rapidly cooled arc peridotites may indicate that these samples represent fragments of mantle wedge that has been metasomatised by heavy, slab-derived fluids. If such material is typically stirred back into the convecting mantle, it may account for the heavy Ī“7Li seen in some oceanic basalts.PPvS was supported by NERC grant NER/C510983/

    Spinel Harzburgite-Derived Silicate Melts Forming Sulfide-Bearing Orthopyroxenite in the Lithosphere. Part 1: Partition Coefficients and Volatile Evolution Accompanying Fluid- and Redox-Induced Sulfide Formation

    Get PDF
    We report abundances of major trace and volatile elements in an orthopyroxenite vein cutting a sub-arc, mantle-derived, spinel harzburgite xenolith from Kamchatka. The orthopyroxenite contains abundant sulfides and is characterized by the presence of glass (formerly melt) both interstitially and as inclusions in minerals, comparable with similar veins from the West Bismarck arc. The glass formed by quenching of residual melts following crystallization of abundant orthopyroxene, amphibole, and minor olivine and spinel. The interstitial glass has a low-Ti, high-Mg# andesite composition, with a wide range of H2O and S contents but more limited F and Cl variations. We calculate trace element partition coefficients using mineral and glass data, including those for halogens in amphibole, which agree with experimental results from the literature. Despite having a similar, high-Mg# andesite composition, the orthopyroxene-hosted glass inclusions usually contain much more H2O and S than the interstitial glass (4ā€“7 wt% and āˆ¼2,600 ppm, respectively). The initial vein-forming melts were oxidized, recording oxygen fugacity conditions up to āˆ¼1.5 log units above the fayaliteā€“magnetiteā€“quartz oxygen buffer. They intruded the sub-arc mantle lithosphere at ā‰„1,300Ā°C, where they partially crystallized to form high-Mg# andesitic derivative melts at ca. 1,050ā€“1,100Ā°C. Comparison with literature data on glass-free orthopyroxenite veins from Kamchatka and the glass-bearing ones from West Bismarck reveals fundamental similarities indicating common parental melts, which were originally produced by low-degree melting (ā‰¤5%) of spinel harzburgite at ā‰„1,360Ā°C and ā‰¤1.5 GPa. This harzburgite source likely contained ā‰¤0.05 wt% H2O and a few ppm of halogens. Volatile evolution inferred from glass compositions shows that (i) redox exchange between S6+ in the original melt and Fe2+ in the host mantle minerals, together with (ii) the formation of an S-bearing, (H2O, Cl)-rich hydrothermal fluid from the original melt, provides the conditions for the formation of abundant sulfides in the orthopyroxenites during cooling. During this process, up to 85% of the original melt S content (āˆ¼2,600 ppm) is locally precipitated as magmatic and hydrothermal sulfides. As such, melts derived from spinel harzburgite sources can concentrate chalcophile and highly siderophile metals in orthopyroxenite dykes and sills in the lithosphere

    Localization length and impurity dielectric susceptibility in the critical regime of the metal-insulator transition in homogeneously doped p-type Ge

    Full text link
    We have determined the localization length \xi and the impurity dielectric susceptibility \chi_{\rm imp} as a function of Ga acceptor concentrations (N) in nominally uncompensated ^{70}Ge:Ga just below the critical concentration (N_c) for the metal-insulator transition. Both \xi and \chi_{\rm imp} diverge at N_c according to the functions \xi\propto(1-N/N_c)^{-\nu} and \chi_{\rm imp}\propto(N_c/N-1)^{-\zeta}, respectively, with \nu=1.2\pm0.3 and \zeta=2.3\pm0.6 for 0.99N_c< N< N_c. Outside of this region (N<0.99N_c), the values of the exponents drop to \nu=0.33\pm0.03 and \zeta=0.62\pm0.05. The effect of the small amount of compensating dopants that are present in our nominally uncompensated samples, may be responsible for the change of the critical exponents at N\approx0.99N_c.Comment: RevTeX, 4 pages with 5 embedded figures, final version (minor changes

    Hfā€“Zr anomalies in clinopyroxene from mantle xenoliths from France and Poland: implications for Luā€“Hf dating of spinel peridotite lithospheric mantle

    Get PDF
    Clinopyroxenes in some fresh anhydrous spinel peridotite mantle xenoliths from the northern Massif Central (France) and Lower Silesia (Poland), analysed for a range of incompatible trace elements by laser ablation inductively coupled plasma mass spectrometry, show unusually strong negative anomalies in Hf and Zr relative to adjacent elements Sm and Nd, on primitive mantle-normalised diagrams. Similar Zrā€“Hf anomalies have only rarely been reported from clinopyroxene in spinel peridotite mantle xenoliths worldwide, and most are not as strong as the examples reported here. Low Hf contents give rise to a wide range of Lu/Hf ratios, which over geological time would result in highly radiogenic ĪµHf values, decoupling them from ĪµNd ratios. The high 176Lu/177Hf could in theory produce an isochronous relationship with 176Hf/177Hf over time; an errorchron is shown by clinopyroxene from mantle xenoliths from the northern Massif Central. However, in a review of the literature, we show that most mantle spinel peridotites do not show such high Lu/Hf ratios in their constituent clinopyroxenes, because they lack the distinctive Zrā€“Hf anomaly, and this limits the usefulness of the application of the Luā€“Hf system of dating to garnet-free mantle rocks. Nevertheless, some mantle xenoliths from Poland or the Czech Republic may be amenable to Hf-isotope dating in the future
    • ā€¦
    corecore