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Abstract 13 

We present whole rock Li and Mg isotope analyses of 33 ultramafic xenoliths from 14 

the terrestrial mantle, which we compare with analyses of 30 (mostly chondritic) 15 

meteorites. The accuracy of our new Mg isotope ratio measurement protocol is 16 

substantiated by a combination of standard addition experiments, the absence of mass 17 

independent effects in terrestrial samples and our obtaining identical values for rock 18 

standards using 2 different separation chemistries and 3 different mass-spectrometric 19 

introduction systems. Carbonaceous, ordinary and enstatite chondrites have 20 

irresolvable mean stable Mg isotopic compositions (δ25Mg = -0.14 ± 0.06; δ26Mg = -21 

0.27 ± 0.12‰, 2sd), but our enstatite chondrite samples have lighter δ7Li (by up to 22 

~3‰) than our mean carbonaceous and ordinary chondrites (3.0 ± 1.5‰, 2sd), 23 

possibly as a result of spallation in the early solar system. Measurements of 24 

equilibrated, fertile peridotites give mean values of δ7Li = 3.5 ± 0.5‰, δ25Mg = -0.10 25 

± 0.03‰ and δ26Mg = -0.21 ± 0.07‰. We believe these values provide a useful 26 

estimate of the primitive mantle and they are within error of our average of bulk 27 

carbonaceous and ordinary chondrites. A fuller range of fresh, terrestrial, ultramafic 28 

samples, covering a variety of geological histories, show a broad positive correlation 29 

between bulk δ7Li and δ26Mg, which vary from -3.7 to +14.5‰, and -0.36 to +0.06‰, 30 

respectively. Values of δ7Li and δ26Mg lower than our estimate of primitive mantle 31 

are strongly linked to kinetic isotope fractionation, occurring during transport of the 32 

mantle xenoliths. We suggest Mg and Li diffusion into the xenoliths is coupled to H 33 
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loss from nominally anhydrous minerals following degassing. Diffusion models 34 

suggest that the co-variation of Mg and Li isotopes requires comparable diffusivities 35 

of Li and Mg in olivine. The isotopically lightest samples require ~5-10 years of 36 

diffusive ingress, which we interpret as a time since volatile loss in the host magma.  37 

Xenoliths erupted in pyroclastic flows appear to have retained their mantle isotope 38 

ratios, likely as a result of little prior degassing in these explosive events. High δ7Li, 39 

coupled with high [Li], in rapidly cooled arc peridotites may indicate that these 40 

samples represent fragments of mantle wedge that has been metasomatised by heavy, 41 

slab-derived fluids. If such material is typically stirred back into the convecting 42 

mantle, it may account for the heavy δ7Li seen in some oceanic basalts.  43 

 44 

1.0 Introduction 45 

New stable isotopic tracers provide novel means to assess the composition of 46 

the mantle, its relationship to meteoritic building blocks and processes that cause 47 

heterogeneity. Both lithium (6Li and 7Li) and magnesium (24Mg, 25Mg and 26Mg) 48 

isotopes have received considerable recent interest e.g. (Tomascak, 2004; Young and 49 

Galy, 2004), the former for its potential to trace recycled material e.g. (Elliott et al., 50 

2004), and the latter as a major constituent of the mantle. There are some notable 51 

similarities in the elemental and isotopic behaviour of Li and Mg which make it 52 

worthwhile to consider these tracers jointly. Lithium readily substitutes for Mg in 53 

many mineral structures, having a comparable ionic radius (Shannon and Prewitt, 54 

1969). Notably, Li and Mg are both largely hosted in olivine in the shallow mantle. 55 

Cosmochemically, Mg and Li are only moderately volatile and so the isotopic 56 

composition of meteorites should usefully inform on the bulk composition of the 57 

Earth e.g. (Palme and O'Neill, 2003). The large relative mass differences between 7Li-58 
6Li and 26Mg-24Mg result in considerable variability in δ7Li and δ26Mg in the low-59 

temperature silicate weathering environment e.g. (Chan et al., 1992; Tipper et al., 60 

2006b), but the relatively high diffusivities of Li (Svanson and Johansson, 1970; 61 

Jambon et al., 1978; Lowry et al., 1982) and to a lesser extent Mg (Morioka, 1981; 62 

Chakraborty et al., 1994) can result in their diffusive isotopic fractionation at 63 

magmatic temperatures (Richter et al., 2003; Lundstrom et al., 2005; Teng et al., 64 

2006; Richter et al., 2008). 65 
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Here we make a coupled Li and Mg isotopic study of magma-hosted, 66 

ultramafic xenoliths. An impetus for this combination is to use Mg to help better 67 

understand the importance of diffusive fractionations in the Li isotopic composition of 68 

mantle-derived samples. Although the role of diffusive fractionation of Li during 69 

entrainment, transport and eruption of xenoliths is well documented, especially at the 70 

mineral scale (Jeffcoate et al., 2007; Rudnick and Ionov, 2007; Tang et al., 2007; 71 

Ionov and Seitz, 2008; Kaliwoda et al., 2008), its importance in influencing bulk 72 

xenolith compositions is less clear. Moreover, it is anticipated that deep recycling of 73 

surface materials might create primary differences in δ7Li within the mantle, as has 74 

been inferred from the Li isotopic compositions of some oceanic basalts (Chan and 75 

Frey, 2003; Ryan and Kyle, 2004; Nishio et al., 2005; Elliott et al., 2006; Chan et al., 76 

2009). Thus it would be useful to be able to distinguish primary variability from 77 

recent diffusive fractionation. Mg offers the potential to clarify this ambiguity. As the 78 

major mantle cation, addition of recycled material will have minimal effect on its 79 

isotopic ratio, whereas diffusive processes will likely fractionate Mg together with Li 80 

(Richter et al., 2003; Richter et al., 2008). Hence we have analysed whole rock Li and 81 

Mg isotopic ratios on a range of xenoliths, including samples in which variable 82 

amounts of diffusive fractionation have already been identified (Jeffcoate et al., 2007; 83 

Rudnick and Ionov, 2007), a suite of xenoliths from a mantle wedge setting that might 84 

display primary heavy Li isotope signatures and additional samples that have 85 

experienced a range of metasomatic enrichment processes. 86 

In order to identify perturbation of Li and Mg isotope ratios from either 87 

recycling or diffusion, it is necessary to establish a reference for the primitive mantle.  88 

Thus we have also analysed a range of chondritic meteorites. Given the recent 89 

profusion of not always consistent Mg isotopic data for mantle-derived samples 90 

(Norman et al., 2006; Pearson et al., 2006; Teng et al., 2007; Wiechert and Halliday, 91 

2007; Handler et al., 2009; Huang et al., 2009a; Yang et al., 2009; Bourdon et al., 92 

2010; Chakrabarti and Jacobsen, 2010; Teng et al., 2010; Bizzarro et al., 2011; Huang 93 

et al., 2011) we have also made some effort to assess the accuracy of Mg isotopic 94 

measurements by using several different approaches. 95 

 96 

2.0 Samples 97 

We have largely focussed on whole-rock samples in order to obtain 98 

representative bulk compositions. Studies of traditional, radiogenic, highly 99 
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incompatible isotope tracers have noted that element budgets hosted along grain 100 

boundaries can have a major influence on bulk xenolith compositions (Zindler and 101 

Jagoutz, 1988) and so have typically focussed on analysing individual mineral phases. 102 

Such problems should not be a concern for a compatible element like Mg, or even a 103 

moderately incompatible one like Li, for which an overwhelming fraction of the 104 

element is hosted in the major mineral phases. Moreover, the assumption for 105 

radiogenic isotopic systems that the composition of one phase can represent the bulk 106 

is less robust for stable isotopic systems (e.g. Li, Mg, Ca), in which there might be 107 

significant intra-mineral equilibrium fractionation (Seitz et al., 2004; Young et al., 108 

2009; Huang et al., 2010b; Li et al., 2011). In the case of Li, it can be also difficult to 109 

reconstitute bulk compositions from individual mineral analyses of highly isotopically 110 

zoned constituent minerals (Jeffcoate et al., 2007). 111 

Well-characterised, ultramafic xenoliths from several different geodynamic 112 

settings, with variable histories of enrichment and depletion were analysed. Figure 1 113 

illustrates the variability in melt depletion and metasomatism experienced by different 114 

sample suites, as indicated by Mg# and primitive mantle normalised La/Sm 115 

(McDonough and Frey, 1989; Workman and Hart, 2005). Many of the samples in this 116 

study have also been analysed for Fe isotopes by Weyer and Ionov (2007). Our 117 

samples include xenoliths hosted in the Cenozoic alkali basalts from Tok in the SE 118 

Siberian craton (Ionov et al., 2005b; Ionov et al., 2005c; Ionov et al., 2006), from off-119 

craton sites in central Asia (Preß et al., 1986; Ionov and Wood, 1992; Ionov, 2004; 120 

Ionov et al., 2005a; Ionov, 2007; Ionov and Hofmann, 2007), and xenoliths from the 121 

Avacha andesitic volcano in Kamchatka (Weyer and Ionov, 2007; Ionov and Seitz, 122 

2008; Ionov, 2010). Brief overviews of the xenolith localities are provided below.  123 

The cratonic Tok xenoliths represent two different groups: lherzolite-124 

harzburgite (LH), comprising fertile to highly refractory peridotite, and lherzolite-125 

wehrlite (LW) groups, where complete or large-scale replacement of orthopyroxene 126 

by clinopyroxene has occurred (Ionov et al., 2005b; Ionov et al., 2005c; Ionov et al., 127 

2006; Rudnick and Ionov, 2007). The LH group reflects variable amounts of melt 128 

extraction at shallow levels from a fertile source. Refractory LH peridotites (olivine-129 

rich, cpx-poor) are strongly metasomatised, probably by several metasomatic stages 130 

(first by percolation of evolved fluids, then by alkali-rich fluids) and tend to be 131 

relatively enriched in the LREE (Fig. 1). The associated lherzolite-wehrlite (LW) 132 

group was formed by the reaction of refractory residual peridotite (i.e. the LH series 133 
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protolith) with evolved Fe-rich silicate liquids and are characterised by complete or 134 

large-scale replacement of orthopyroxene by clinopyroxene and low Mg# (<0.89) 135 

(Ionov et al., 2005b, Ionov et al., 2005c; Ionov et al., 2006; Rudnick and Ionov, 136 

2007).  Unlike most of the other samples (below), xenoliths from the Tok locality are 137 

typically hosted in lava flows rather than pyroclastic eruptions (Table 1). 138 

Off-craton xenoliths are represented by samples from Tariat (Ionov, 2007; 139 

Ionov and Hofmann, 2007) and Dariganga (Wiechert et al., 1997) in Mongolia, and 140 

Vitim in southern Siberia (Ionov, 2004; Ionov et al., 2005a). These samples generally 141 

comprise fertile spinel and garnet lherzolites, which are uncommon in global 142 

occurrence, and some spinel harzburgites, some of which have been variably 143 

metasomatised. The Mongolian (Tariat) peridotite xenoliths are fertile spinel 144 

lherzolites and spinel harzburgites, some of which have also been variably 145 

metasomatised. Metasomatic processes include Fe-enrichment through chemical 146 

exchange between the host peridotite and percolating Fe-rich melt with no significant 147 

phase reactions. Prior to metasomatism, these samples were probably fairly fertile 148 

peridotites depleted by generally low-degree but variable melt extraction, and some 149 

samples (Mo-101) retain their fertile character (Ionov, 2007; Ionov and Hofmann, 150 

2007; Wichert et al., 1997). Vitim is represented by fertile spinel and garnet 151 

lherzolites, erupted in picritic tuffs. These samples are thought to reflect moderate 152 

degrees of melt extraction from a fertile protolith, similar in composition to the 153 

primitive mantle, and have been little affected by modal or cryptic metasomatism 154 

(Ionov, 2004; Ionov et al., 2005a). 155 

The spinel harzburgites from Avacha (Kamchatka) provide examples of arc 156 

peridotites, situated ~120km above the subducting Pacific plate (Gorbatov et al., 157 

1997). They are thus interpreted as direct samples of mantle wedge regions affected 158 

by melt extraction and upward fluid migration from the slab (Ionov and Seitz, 2008). 159 

The samples studied here were selected on a basis of the absence of reaction with 160 

their host magmas (i.e. they contain no macroscopically detectable veins or modal 161 

heterogeneities) and any post-eruptive alteration (Ionov, 2010). The Avacha xenoliths 162 

were erupted in rapidly cooling pyroclastic cinder (Ionov, 2010). 163 

Although samples were dominantly selected to record a wide range of possible 164 

mantle processes, we also chose a small sub-set of fertile upper mantle compositions 165 

likely to be representative of the convecting mantle (Fig. 1). In order for these 166 

samples to be a useful, primary reference for Li isotopes, we wished to avoid 167 
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xenoliths that had experienced diffusive Li isotope fractionation during entrainment 168 

and emplacement (Jeffcoate et al., 2007; Rudnick and Ionov, 2007; Tang et al., 2007; 169 

Ionov and Seitz, 2008; Kaliwoda et al., 2008). Thus we chose four fertile samples 170 

(Mo-101, 314-56, 313-102, 314-58), for which previous analyses of co-existing 171 

mineral phases indicated minimal diffusive disturbance of Li (Magna et al., 2006b; 172 

Jeffcoate et al., 2007). 173 

In order to provide a meteoritic reference against which to gauge terrestrial 174 

mantle variability, we analysed a total of 30 bulk meteorite samples of different 175 

groups and metamorphic grades (see Table 1 for details). We focussed on 176 

undifferentiated meteorites, as possible representatives of bulk planetary 177 

compositions, including 9 carbonaceous chondrites, 10 ordinary and 7 enstatite 178 

chondrites.  We additionally analysed a few differentiated meteorites (3 eucrites and 179 

an aubrite) for Li isotopes. 180 

 181 

3.0 Methods 182 

3.1 Chemistry 183 

Powdered samples were dissolved in concentrated HF-HNO3-HClO4, followed 184 

by stages of concentrated (~15M) HNO3 and 6M HCl. HClO4 was primarily used to 185 

prevent the formation of insoluble Li-fluorides (Ryan and Langmuir, 1987). Mineral 186 

separates and chondrite chips were first cleaned by ultrasonication in methanol and 187 

MQ H2O; all samples for Li isotope analysis were then crushed, whereas whole 188 

crystals were dissolved without prior crushing for Mg isotope measurements, because 189 

the small amount of material required made this possible. Li concentrations, if not 190 

already available, were measured on an Element 2 ICP-MS (inductively coupled 191 

plasma mass spectrometer) using a calibration line comprising standards JP-1 192 

([Li]=1.66µg/g), BHVO-2 (4.42µg/g) and BCR-2 (8.63µg/g), whose concentrations 193 

were determined by isotope dilution using a 95% enriched 6Li spike, which had been 194 

calibrated against a gravimetric L-SVEC solution. JB-2 was analysed as an unknown 195 

in every run and yielded [Li] = 7.43±0.38µg/g.  196 

For each sample, ~10ng of Li were purified by a two-step cation column 197 

(AG50W X12) separation method using dilute HCl as an eluant, as described 198 

elsewhere (James and Palmer, 2000; Marschall et al., 2007b). ~1µg of Mg was 199 

separated from a different split of the same dissolution. The sample matrix was also 200 
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removed with a two-step cation exchange (AG 50W X12) high aspect ratio column 201 

method using a 2.0N HNO3 eluant (Lee and Papanastassiou, 1974; Lee et al., 1976; 202 

Black et al., 2006; Teng et al., 2007; Huang et al., 2009b). 2.4ml dry volume of resin 203 

was used for the first column (Pogge von Strandmann, 2008), and 0.25ml for the 204 

second column (Foster et al., 2010). The effectiveness of chemical separation using 205 

these procedures was determined by ICP-MS for several rock standards. The post-206 

chemistry Mg/Al mass ratios in the JP-1 peridotite were >1000 and Mg/Mn > 1100, 207 

whilst Fe and Ca were below detection limits. For BHVO-2 basalt, Mg/Al > 400, 208 

Mg/Fe > 800 and Ca and Mn were below detection limits. Mg/cation ratios <20 are 209 

thought to cause analytical artefacts (Galy et al., 2001; Teng et al., 2007), and this 210 

methodology clearly betters this threshold by at least an order of magnitude. 211 

Contributors to spectral interferences on Mg (48Ti++, 50V++, 52Cr++) are also effectively 212 

removed by the chemistry (24Mg/48Ti > 8000; 25Mg/50V > 5000; 26Mg/52Cr > 1000), 213 

bearing in mind that the doubly charged ions will be orders of magnitude less 214 

abundant in the ion source than singly charged species. Both Li and Mg isotopes 215 

fractionate during cation chromatography, and therefore it is essential to have column 216 

yields close to 100%. To assess this, splits of the elution were collected before and 217 

after the collection bracket for Li or Mg, and were analysed for Li or Mg content. This 218 

showed that <0.1% of Li and Mg were present in these splits.   219 

To compare the HNO3-based purification method for Mg to the alternative 220 

HCl method (Chang et al., 2003; Tipper et al., 2006a; Wiechert and Halliday, 2007; 221 

Tipper et al., 2008), several rock standards were first purified through anion exchange 222 

resin (AG1 X8) using 6M HCl to remove elements such as Fe (as Fe elutes 223 

contemporaneously to Mg in cation exchange resin when using HCl), before being 224 

passed though the same cation exchange columns detailed above using dilute (1.75N) 225 

HCl. In JP-1 thus purified, Mg/Fe > 3000, Mg/Al > 75 and Mg/Ca > 200. Purified 226 

BHVO-2 has Mg/Al > 100, Mg/Fe > 1000 and Mg/Ca >200. This suggests that 227 

although the HCl method is marginally more efficient in removing Fe due to the 228 

initial anionic resin step, the HNO3 method removes the rest of the major matrix 229 

elements more effectively. However both procedures are capable of removing matrix 230 

sufficiently well for analysis. The results of rock standards processed using both 231 

methods are discussed below.  232 

The minor element Ni is not efficiently removed from Mg by either chemical 233 

separation procedure. The Mg/Ni ratios of different mantle and mantle-derived 234 
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samples can vary considerably and so analysed solutions may also have quite variable 235 

Mg/Ni (Mg/Ni of JP-1 and BHVO-2 purified using HNO3 are ~200 and ~1000, 236 

respectively). Thus we tested the effects of different Mg/Ni on analysed solutions by 237 

doping the DSM-3 standard (Galy et al., 2003). No isotopic variability was measured 238 

down to Mg/Ni ratios of 1 (Fig. 2). A similar finding was reported by Teng et al., 239 

2010 for “wet” plasma (see Section 3.2), but both Teng et al., 2010 and Huang et al., 240 

2009 reported resolvable δ26Mg variation when Ni doping with “dry” desolvation 241 

plasma. This may indicate that desolvation techniques are more susceptible to matrix 242 

effects, and is discussed below. The total procedural blank for Mg isotope analysis 243 

using HNO3 is ~0.4ng which is insignificant compared to the mass of sample used. 244 

 245 

3.2 Mass spectrometry 246 

Li isotope measurements were performed on a Thermo-Finnigan Neptune 247 

multi-collector inductively coupled plasma mass-spectrometer (MC-ICP-MS), as 248 

detailed elsewhere (Jeffcoate et al., 2004). Prior to analysis, the Na/Li intensity ratio 249 

was measured, as ratios >3 can cause inaccurate analyses. If samples had higher Na/Li 250 

ratios, they were re-purified. This occurred in approximately 1 in 50 samples. 251 

Multiple analyses of several international rock standards over a period of four years 252 

(Table 2) yielded a 2σSD external reproducibility of ±0.3‰, in keeping with 253 

previously cited reproducibility (Elliott et al., 2006; Jeffcoate et al., 2007). Results are 254 

presented as δ7Li, namely the ‰ deviations from the standard L-SVEC (Flesch, 255 

1973).  256 

Magnesium isotope analyses were also made on a Neptune using high 257 

sensitivity “X” Ni skimmer cones. Prior to measurement, the intensities of Na, Al, Ca, 258 

Ti and Fe were checked on the Neptune to ensure that the matrix was consistently 259 

removed, but a high residual matrix was never observed. A sample-standard 260 

bracketing technique was used, relative to the standard DSM-3 (Galy et al., 2003). 261 

Each sample was measured four separate times during an analytical procedure, repeat 262 

measurements being separated by several hours, but during the same analysis session. 263 

Each individual measurement consisted of 20 ratios (84s total integration time), 264 

giving a total integration time of 336s/sample for the four repeat measurements that 265 

constitute a single analysis (n=1 in Table 2). We use the 2s.e. of these four 266 

measurement as an assessment of our ‘internal’ error, reported with individual 267 
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analyses. Repeat analyses listed in Tables 1 and 2 involved separate dissolutions and 268 

chemical purifications, and should not be confused with repeats measured during a 269 

single analytical session. Based on the analysis of several international rock standards 270 

(Table 2), the 2σSD external reproducibility of the analyses is ±0.06‰ on δ26Mg.  271 

Three separate methods of sample introduction were trialled for Mg isotope 272 

analysis. Firstly an Aridus (Cetac Instruments) desolvating nebuliser was used. Due to 273 

interferences, primarily CN+ on 26Mg, it is necessary to run the mass spectrometer in 274 

medium resolution (M/ΔM ~ 6000, 5-95% peak edge width), resulting in the 275 

sensitivity being reduced by a factor of ~4-5 relative to standard ‘low’ resolution 276 

operation. The CN+ interference is present even if the N2 sweep gas to the Aridus is 277 

disconnected.  278 

Secondly, we used a combination Scott double-pass cyclonic quartz spray 279 

chamber as in the study of Pogge von Strandmann, 2008. The problematic molecular, 280 

spectral interferences using the desolvating introduction system are largely absent 281 

under these wet plasma conditions. The C2
+ and CN+ intensities are less than 5000 ion 282 

counts per second (cps) at medium resolution and furthermore, there is no significant 283 

hydride formation (MgH/Mg<10-6). Measurements are, therefore, made at low 284 

resolution, with no loss of sensitivity compared to desolvation at medium resolution. 285 

Approximately 50% of the samples presented here were analysed using the quartz 286 

spray chamber/low resolution method. This sensitivity is ~120pA of 24Mg+ for a 287 

200ng/ml solution at an uptake rate of 50µl/min. Background, instrumental Mg 288 

intensities, typically ~0.08pA 24Mg, are subtracted from the sample intensities 24Mg. 289 

Finally, an ApexQ (Elemental Scientific Inc.) introduction system was tested. This 290 

“moist” plasma introduction system allows for greater sensitivity (~100pA of 24Mg+ 291 

for a 50ng/ml solution at an uptake rate of 50µl/min) than the quartz spray chamber 292 

setup described above, but is sufficiently free of spectral interferences to allow 293 

analysis at low resolution (CN+ ~2000cps at medium resolution). All mineral 294 

separates and repeats of whole rocks were analysed by this method.  295 

The results of the standards analysed by all three methods are identical within 296 

uncertainty and are presented in Table 2. The concordance of measurements made 297 

using three different introduction methods (Fig. 3) gives confidence in the accuracy of 298 

our procedures, because the introduction systems are likely differently sensitive to the 299 

presence of matrix and possibly influenced by different interferences (e.g. Teng et al., 300 
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2010). In general, no systematic differences were observed in the internal or external 301 

uncertainty of measurements made using these different introduction systems.  302 

The excellent mass bias stability and internal precision achievable on the 303 

Neptune allowed us to identify some important external influences on instrumental 304 

mass bias. Notably the mass flow controllers (especially the one regulating sample 305 

gas) responded to changes in air temperature of ≤2°C (during the cycles of the air 306 

conditioning system), causing resolvable periodic isotope ratio variations of ~0.1‰ 307 

on Mg isotope ratios. It is possible that such processes could affect analyses in other 308 

laboratories. To remove these artefacts, all Neptune mass flow controllers were 309 

subsequently water-cooled to our own design.  310 

 311 

4.0 Results 312 

4.1 Chondrite analyses 313 

 Bulk Li isotope compositions of chondrites show significant variability, 314 

although the range is less than for published data (Fig. 4a). Excluding finds (which 315 

may be weathered, and therefore have altered isotope ratios), enstatite chondrites have 316 

lighter Li isotopic compositions (δ7Li = 1.7 ± 1.6‰ (2sd), n=7), than carbonaceous 317 

chondrites (3.3 ± 1.4‰, n=10) and ordinary chondrites (2.8 ± 1.5‰, n=11) (Table 1). 318 

Eucrites have similar δ7Li to carbonaceous chondrites (3.3 ± 0.9‰, n=3), but our 319 

single aubrite has a very low δ7Li of -0.3‰. Our δ7Li values generally agree well with 320 

previously published data (James and Palmer, 2000; McDonough et al., 2003; 321 

Sephton et al., 2004; Sephton et al., 2006; Seitz et al., 2007). Interestingly, analyses of 322 

different chips of the same meteorite result in resolvable isotopic differences of up to 323 

1.5‰. There are also similar isotopic differences compared to the data set of Seitz et 324 

al., 2007.  325 

Bulk chondrite δ26Mg values range from -0.38 to -0.15‰ (Table 1), with an 326 

average of -0.27‰. There is no difference in δ26Mg between carbonaceous chondrites 327 

(average δ26Mg = -0.29 ± 0.16‰ (2sd)), ordinary chondrites (average δ26Mg = -0.28 ± 328 

0.13‰) or enstatite chondrites (average δ26Mg = -0.26 ± 0.08‰) (Fig. 4b). The δ26Mg 329 

results from individual meteorites generally agree well with whole-rock results from 330 

most other studies (Galy et al., 2000; Baker et al., 2005; Teng et al., 2007; Wiechert 331 

and Halliday, 2007; Teng et al., 2010), but are resolvably heavier than the results from 332 

Chakrabarti and Jacobsen (2010).  333 
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All whole-rock chondrites measured plot within ±0.01‰ Δ25Mg of the 334 

terrestrial fractionation line, in keeping with other studies (Bizzarro et al., 2004; 335 

Young and Galy, 2004; Baker et al., 2005; Teng et al., 2010). To provide more 336 

precise constraints on any possible mass-independent component, we have also recast 337 

our data into δ26Mg* by mass fractionation correction of 26Mg/24Mg in all samples 338 

and standards to constant 25Mg/24Mg = 0.12663 (Catanzaro et al., 1966) and further 339 

“external” normalisation of samples to bracketing standards (Table 1). These 340 

chondritic mass independent Mg isotope ratios, average δ26Mg* = 0.0029 ± 0.017‰, 341 

are indistinguishable from our terrestrial values, average = 0.0044 ± 0.022‰ (Thrane 342 

et al., 2008). We note, however, that our measurements were set up to determine 343 

precise mass dependent fractionation, which requires minimised time between 344 

bracketing standards, whereas for precise mass independent fractionation longer 345 

analysis times are needed e.g. (Schiller et al., 2010).  346 

 347 

4.2 Whole-rock analyses 348 

The results from the whole-rock peridotite analyses are shown in Table 1. Li 349 

concentrations in the ultra-mafic xenoliths vary between 0.5 and 4.8 µg/g, where the 350 

highest concentrations are in the Tok wehrlites. This is a similar concentration range 351 

to previously reported bulk peridotites (Brooker et al., 2004; Seitz et al., 2004; Magna 352 

et al., 2006b; Jeffcoate et al., 2007; Magna et al., 2008; Aulbach and Rudnick, 2009), 353 

but greatly exceeds the uncertainty on the estimate of the primitive mantle [Li] = 1.6 ± 354 

0.5 µg/g (McDonough and Sun, 1995) or the variability in bulk carbonaceous and 355 

ordinary chondrites (1.3 ± 0.6 µg/g; Section 4.1).  356 

Li isotope ratios in samples analysed in this study, -3.9 to +8.1‰ (average = 357 

2.6‰, Fig. 5), show a similar range to previously determined bulk peridotites 358 

(Brooker et al., 2004; Seitz et al., 2004; Magna et al., 2006b; Jeffcoate et al., 2007; 359 

Magna et al., 2008; Aulbach and Rudnick, 2009). There is no clear overall trend 360 

between [Li] and δ7Li, although the Avacha arc-peridotites generally show a positive 361 

trend of [Li] and δ7Li, but over a much more limited range of [Li]. 362 

Mg isotope ratios of the peridotites vary between -0.35 and +0.06‰ (δ26Mg), 363 

with an average of -0.21‰. There are no obvious trends between δ26Mg and the 364 

considerable range of Mg# (or MgO), although in general isotopically lightest 365 
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samples have the highest Mg# (Fig. 5). It is worth noting that the full range in δ26Mg 366 

is much smaller relative to reproducibility (±0.06‰, 2sd) than for δ7Li (±0.3‰). 367 

 368 

4.3 Mineral separates 369 

The Li and Mg isotope compositions of mineral separates from several 370 

peridotites were also determined (Table 3). Three samples from Tok, for which we 371 

have measured whole-rock Li isotope compositions, have also had olivine and 372 

clinopyroxene separates analysed for δ7Li by Rudnick and Ionov (2007). These Tok 373 

peridotites show clear evidence of Li isotope modification by diffusion, demonstrated 374 

by the very low δ7Li in clinopyroxene relative to olivine (Rudnick and Ionov, 2007). 375 

The Avacha xenoliths, on the other hand, exhibit very little variation in inter-mineral 376 

δ7Li (Fig. 6; Table 3). Some separates from Avacha have previously been analysed by 377 

Ionov and Seitz (2008) and compare well to our [Li] and δ7Li values, given the larger 378 

uncertainties of the previous study. The Avacha data from this study are also within 379 

the range in isotope ratio and concentration measured for different Avacha samples by 380 

Halama et al., 2009.  381 

Mg isotope compositions were analysed in minerals of two Tok lherzolite-382 

wehrlite series peridotites, a Tok lherzolite-harzburgite series peridotite, an Avacha 383 

sample, a phlogopite-bearing spinel lherzolite (4230-16) and two samples which best 384 

represent unaltered peridotite (Mo-101 and 314-56), where the latter samples have 385 

been shown to have δ7Li values in cpx which are higher or similar compared to 386 

coexisting olivine (Jeffcoate et al., 2007). This is significant, as it appears that kinetic 387 

processes during xenolith entrainment and eruption cause the δ7Li in clinopyroxenes 388 

to become lighter than co-existing olivines (Jeffcoate et al., 2007; Rudnick and Ionov, 389 

2007). For all samples, the Mg in clinopyroxene was found to be isotopically heavier 390 

than coexisting olivine (Fig. 6), which is in agreement with the results from other 391 

studies (Young et al., 2002; Wiechert and Halliday, 2007; Handler et al., 2009; Yang 392 

et al., 2009; Young et al., 2009; Chakrabarti and Jacobsen, 2010). Coexisting olivine 393 

and orthopyroxene were isotopically irresolvable in their δ26Mg (Table 3).  394 

 395 

5.0 Discussion 396 

5.1 Comparison to published standard data 397 
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Several international rock standards were analysed for Li and Mg isotopes that 398 

span a range of relevant matrices for this and future studies of mantle derived 399 

samples: JP-1 (peridotite), BHVO-2 (ocean island basalt), BCR-2 (flood basalt) and 400 

JB-2 (arc basalt). For Mg isotope measurements, most of these rock standards were 401 

processed using both HCl and HNO3 separation procedures (see methods), and 402 

yielded identical results within analytical uncertainty (Table 2; Fig. 3). In addition, the 403 

pure Mg solution standard CAM-1 and the normalising standard DSM-3 were passed 404 

through chemistry to ensure that the separation procedure does not induce artefacts 405 

(Table 2). Seawater and carbonate values, processed by the same methods, are 406 

reported elsewhere (Pogge von Strandmann, 2008; Foster et al., 2010).  407 

The results from CAM-1 and rock standards analysed using desolvation 408 

nebulisation (Aridus and medium resolution), a quartz spray chamber and an Apex 409 

introduction system are identical (Fig. 3), as too are results using both HNO3- and 410 

HCl-based chemistries.  411 

The measured value of the standard JP-1 (δ25Mg = -0.13 ± 0.04‰; δ26Mg = -412 

0.25 ± 0.05‰; 2sd, n=41, 29 dissolutions) differs considerably from the value 413 

reported by Wiechert and Halliday (2007) of +0.03‰ on δ25Mg (δ26Mg for JP-1 was 414 

not reported by these authors). This disparity has led us to conduct a standard addition 415 

experiment. In this we mixed JP-1 with CAM-1, without adding additional matrix 416 

(Tipper et al., 2008). Our three point determination (Fig. 7) is sufficiently precise to 417 

support our lighter value for JP-1, in contrast with Wiechert and Halliday (2007), but 418 

in keeping with Handler et al., 2009 (δ26Mg = -0.23 ± 0.07‰).  419 

Checking values of sample and standard by the standard addition approach 420 

usefully guards against some but not all sources of inaccuracy.  This method does not 421 

isolate the influence of artefacts that are proportional to the mass of sample in the 422 

mix, such as isobaric interferences or mass bias influences that are linearly related to 423 

sample impurity. We feel our concordant results using several different chemistries 424 

and introduction systems, however, have already indicated that such concerns are not 425 

important in this study. We note, however, that the recent work of Chakrabarti et al., 426 

(2010) reports much lighter Mg isotope ratios in chondrites and peridotites than this 427 

or all other recent studies. Further work needs to be undertaken to account for this 428 

discrepancy.  429 
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Finally, two separate San Carlos olivines were analysed on the same xenolith 430 

studied by Jeffocate et al., 2007, with an average δ26Mg of -0.30‰ (-0.34 to -0.27‰). 431 

Previous analyses of San Carlos olivines have shown a wide range of δ26Mg (-0.68‰ 432 

(Teng et al., 2007), -0.06‰ (Wiechert and Halliday, 2007), -0.17‰ (Handler et al., 433 

2009), -0.55‰ (Chakrabarti and Jacobsen, 2010), -0.25‰ (Young et al., 2009) and -434 

0.27‰ (Liu et al., 2010). However, there is a significant compositional range in San 435 

Carlos peridotites (Frey and Prinz, 1978; Galer and O'Nions, 1998) and published Mg 436 

isotope analyses have not been made on the standardised Smithsonian Museum San 437 

Carlos olivine (USNM 111312/444). Moreover, Jeffcoate et al. (2007) documented 438 

extreme, kinetically induced, Li isotopic heterogeneity in their San Carlos sample. 439 

Thus it is unclear whether this variation in reported Mg isotope compositions of San 440 

Carlos olivines is due to sample heterogeneity or inaccuracies in isotope analysis. 441 

Nevertheless, this problem cannot pertain to the differences in the studies of Young et 442 

al., 2009 and Liu et al., 2010 compared to Chakrabarti and Jacobsen (2010), as all 443 

groups measured splits of the same powdered San Carlos olivines.   444 

 445 

5.2. Chondrite analyses  446 

 In order to investigate the influences of terrestrial processes on the isotope 447 

ratios of the mantle, its initial composition must be established. One method to gauge 448 

the composition of the primitive mantle is to study chondritic material e.g. (Palme and 449 

O'Neill, 2003). Carbonaceous and ordinary chondrites have Li isotope compositions 450 

which are similar both to each other and to other studies’ inferred bulk isotopic 451 

compositions of the mantle (Brooker et al., 2004; Magna et al., 2006b; Jeffcoate et al., 452 

2007). Although there is variability in δ7Li beyond analytical error, there is no clear 453 

relationship of isotope ratio with petrographic grade or meteorite group (Table 1, Fig. 454 

4). An average of these analyses may provide a reasonable estimate of primitive 455 

mantle (3.1±1.3‰).  456 

Our averaged analyses of enstatite chondrites have significantly lower δ7Li 457 

than ordinary and carbonaceous chondrites (Fig. 4). Similarly, our one enstatite 458 

achondrite (aubrite) also has a very low δ7Li value. Enstatite chondrites and enstatite 459 

achondrites are thought to have the same or similar parent bodies, given that they 460 

have identical oxygen isotope ratios (Clayton et al., 1984), and partial melting of an 461 

enstatite chondrite yields aubritic material (McCoy et al., 1999).  Our observations are 462 
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somewhat different to those of Seitz et al. (2007), who reported the lowest meteoritic 463 

δ7Li for H4 and H5 ordinary chondrites, although both studies report identical δ7Li for 464 

the only duplicated enstatite chondrite (Indarch). It is possible that the small sample 465 

sizes analysed from significantly heterogeneous meteorites (Sephton et al., 2004 and 466 

below) have biased the results of ourselves and others.  467 

Whilst the variability in δ7Li ~1.5‰ between different sub-samples of the 468 

same meteorite can account for scatter within each chondrite group, the difference of 469 

~1.5‰ between the mean of enstatite and other chondrites suggests a more systematic 470 

process at work. The production of Li by low-energy spallation reactions in the early 471 

solar system (Feigelson et al., 2002) should produce material which is isotopically 472 

light with δ7Li of ~-850‰ (Chaussidon et al., 2001). A spallogenic component has 473 

been indetified in the refractory inclusions of several meteorites (Chaussidon and 474 

Robert, 1998; Chaussidon et al., 2001). It has long been suggested that the reduced 475 

nature of the parent bodies of enstatite chondrites implies they formed closer to the 476 

sun than the other chondrites or achondrites (Kallemeyn and Wasson, 1986) and thus 477 

are comprised of material most strongly influenced by early, solar spallation. In 478 

addition, these isotopically light enstatite chondrites and the aubrite tend to have 479 

higher 21Ne/22Ne than the other chondrites measured here, suggesting a greater 480 

component of spallogenic 21Ne (Schultz and Franke, 2004). Although the depth of 481 

penetration for spallogenic production of 6Li vs. 21Ne is very different, both processes 482 

likely occurred before larger parent bodies formed.  483 

It is worthwhile considering our bulk analyses in the context of the discovery 484 

of δ7Li variations of >15‰ in different constituents of Murchison (CM2): -1.9‰ in 485 

chondrules, but δ7Li ~ +6‰ in phyllosilicate-rich matrix, and values >+13‰ in 486 

carbonate-rich phases (Sephton et al., 2004). Such variability is supported by our 487 

analysis of Allende chondrules (-0.3‰), which is significantly lighter than the bulk 488 

meteorite (+2.7‰). Such variations have been interpreted as the result of aqueous 489 

alteration, and the subsequent formation of phyllosilicates, driving bulk chondrites to 490 

heavier values (James and Palmer, 2000; McDonough et al., 2003; Sephton et al., 491 

2004). It is not clear, however, why aqueous alteration should drive bulk 492 

carbonaceous chondrites to similar values with no obvious trend of increasing δ7Li 493 

with increasing amount of aqueous alteration, i.e. from anhydrous CV/CO through 494 

CM to CI. Although our analysis of Orgeuil (CI) is marginally isotopically heavier 495 
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than the other chondrites, Murchison (CM) is no heavier than Kainsaz (CO). The role 496 

of spallation in making chondrules isotopically light in Li is an intriguing possibility, 497 

but requires further investigation. Regardless of the cause of the heterogeneity, it is 498 

clear that measuring small fragments of chondrite may result in irreproducible δ7Li 499 

values, as shown by our variable δ7Li from different sub-samples of Orgueil, 500 

Murchison and Parnallee. That precise measurements could be made on such small 501 

sample sizes (Table 1) guided our approach in this study but further work on larger 502 

samples is required to provide a more definitive meteoritic reference. 503 

 In contrast to Li isotopes, the bulk Mg isotope compositions of the analysed 504 

chondrite groups are uniform, and within analytical uncertainty of the average 505 

(average δ26Mg = -0.27 ± 0.12‰ (2sd)).  506 

 507 

5.3 Establishing isotope compositions of the fertile mantle 508 

5.3.1 Li isotopes in the fertile mantle 509 

A number of xenoliths (Mo-101, 314-56, 313-102, 314-58) were selected on 510 

the basis of their major element composition as representative of fertile peridotites, 511 

namely a composition that can readily melt to produce basalt (i.e. MgO < 40 wt%, 512 

CaO and Al2O3 > 3 wt%, FeO ~ 8 wt% and Mg# ~ 0.89 (Ringwood, 1975; Sun, 1982; 513 

McDonough, 1990; Ionov, 2007); Fig. 1). That clinopyroxenes have higher or similar 514 

δ7Li to associated olivines in some of these samples (314-58, 313-102, 314-56 515 

(Magna et al., 2006a; Jeffcoate et al., 2007)) has been used to infer the absence of a 516 

late-diffusive influence on their δ7Li (Jeffcoate et al., 2007). These fertile samples 517 

have an average Li concentration of 1.6 ± 0.7 µg/g, and an average δ7Li of 3.2 ± 518 

1.2‰. This range agrees well with that measured for carbonaceous chondrites and 519 

ordinary chondrites by this study (δ7Li = 3.3 ± 1.4‰ and 2.8 ± 1.5‰, respectively; 520 

Section 5.2). We thus concur with Jeffcoate et al. that δ7Li ~3.5‰ is a reasonable 521 

value for the “pristine” upper mantle. 522 

For two of these xenoliths there are published whole rock δ7Li analyses 523 

(reconstituted from mineral separates (Jeffcoate et al., 2007)) that agree with our bulk 524 

rock analyses; one (314-56) is a spinel lherzolite, the other (313-102) is a garnet 525 

lherzolite (Jeffcoate et al., 2007), and give δ7Li = 3.5 ± 0.5‰. In contrast the bulk 526 

rock δ7Li of 314-58 calculated from individual mineral analyses (Magna et al., 2006a) 527 
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differ from our bulk rock by ~1.4‰. This may be due to xenolith-scale heterogeneity, 528 

which is discussed below.  529 

 530 

5.3.2 Mg isotopes in the fertile mantle 531 

Our equilibrated, fertile samples (detailed in Section 5.3.1) have an average 532 

Mg# of 0.888 and an average δ26Mg of -0.21 ± 0.07‰ (Fig. 5), which we propose as a 533 

value for the upper mantle. This δ26Mg is slightly higher but overlaps within 534 

uncertainty the value for bulk chondrites (-0.27 ± 0.12‰; Section 5.2). Statistical 535 

analysis (student-t) shows that the populations of fertile peridotite and carbonaceous 536 

chondrites are distinct at the 95% confidence level. However this test assumes that 537 

each population represents a single base value, which may not be the case, due to 538 

diffusive alteration and/or equilibrium fractionation between minerals (see below). As 539 

discussed above, our bulk mantle value is also within analytical uncertainty of the 540 

values recently suggested by five other comprehensive studies (Handler et al., 2009; 541 

Yang et al., 2009; Young et al., 2009; Bourdon et al., 2010; Teng et al., 2010), and we 542 

suggest that this value is now rather well constrained: primitive mantle olivines of 543 

Handler et al. (2009) average -0.27 ± 0.14‰, those of Young et al. (2009) average -544 

0.25 ± 0.16‰, whilst bulk rock averages -0.26 ± 0.16‰, -0.25 ± 0.07 and -0.22 ± 545 

0.04‰ are reported by Yang et al. (2009), Teng et al. (2010) and Bourdon et al. 546 

(2010), respectively.  547 

 548 

5.4 Mg and Li isotope covariation  549 

One of the more striking results of this study is the wide range in bulk xenolith 550 

δ7Li and δ26Mg (Fig. 8). This variability is significantly in excess of that seen in the 551 

chondrites or inferred fertile mantle samples (Sections 5.3; Fig. 4 & 5). In terms of 552 

δ26Mg, this spread is greater than that reported by Teng et al., 2010 (0.07‰), but 553 

similar to that reported by Yang et al., 2009 (0.34‰). This variability in Mg and Li 554 

isotope compositions allows the xenoliths to be divided into three groups: 1) five 555 

samples with negative δ7Li and generally the lowest Mg isotope ratios; 2) the bulk of 556 

samples with δ7Li extending from 1.2 to 5.9‰ and δ26Mg from -0.29 to -0.06‰; 3) a 557 

single wehrlite, which has both very high δ7Li and δ26Mg. Overall there appears to be 558 

a positive co-variation between δ7Li and δ26Mg in these samples.  559 
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A number of processes are potential candidates for perturbing the Li and Mg 560 

stable isotope ratios of these xenolith samples, such as melt depletion, metasomatism, 561 

in particular of the type that caused the wehrlitisation of several samples (Ionov et al., 562 

2005b), equilibrium fractionation and diffusion (kinetic fractionation). Samples from 563 

Tok, Tariat and Avacha have also been analysed for Fe isotope variations (Weyer and 564 

Ionov, 2007). Only three of those samples have distinct δ56Fe from the normal mantle, 565 

probably caused by interaction of the residual peridotite with evolved, high [Fe] 566 

silicate melts (Weyer and Ionov, 2007). There is no correlation of δ7Li or δ26Mg with 567 

δ56Fe, which shows that the Li and Mg systems remain unaffected by this 568 

metasomatism that lowered the Mg# of some samples. We will explore the other 569 

possibilities below.  570 

 571 

5.4.1 Isotopically light xenoliths 572 

 Several studies have implicated the role of diffusion in creating strikingly 573 

isotopically light Li in clinopyroxenes as a result of incomplete re-equilibration of 574 

xenoliths with host basalt in response to changing conditions during ascent or post-575 

eruptive cooling (Jeffcoate et al., 2007; Rudnick and Ionov, 2007; Tang et al., 2007; 576 

Ionov and Seitz, 2008; Kaliwoda et al., 2008; Aulbach and Rudnick, 2009). Likewise 577 

we infer that diffusive processes have resulted in the low δ7Li seen in some bulk 578 

xenoliths in this study. That δ26Mg is low in the same samples with low δ7Li suggests 579 

that Mg is also affected by diffusive processes. As with all stable isotopes, the lighter 580 

isotope, 24Mg, diffuses faster than the heavier isotopes, and this process has been 581 

demonstrated in melting experiments, by both chemical diffusion (Richter et al., 582 

2008) and Soret diffusion (Huang et al., 2010a), in komatiite olivines (Dauphas et al., 583 

2010) and in evaporation of forsterite (Wang et al., 1999; Yamada et al., 2006). 584 

Further, elemental Mg has long been known to diffuse on the crystal scale, and also 585 

over longer (cm-m) distances via grain boundary diffusion e.g. (Sanford, 1982; Miller 586 

et al., 2009). 587 

This mechanism of net diffusion of Li and Mg from host melt into xenolith 588 

contrasts with the closed system model of Ionov and Seitz (2008), who accounted for 589 

the isotopically light cpx in slowly cooled xenoliths as a result of inter-grain 590 

redistribution of Li between olivine and cpx. This process may also occur, but our 591 
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bulk isotope measurements clearly demonstrate that the xenoliths in question must 592 

have behaved as open systems with respect to Li and Mg.  593 

 594 

5.5 Modelling the isotopic covariation 595 

If the trend towards light Li and Mg isotopes described above is due to 596 

diffusion, it should be possible to model the relative behaviours of the two systems. 597 

High temperature diffusion and corresponding kinetic isotope fractionation 598 

dominantly depends on three variables: 1) the diffusivity (diffusion coefficients) D of 599 

the element; 2) the concentration gradients, or more correctly the chemical potential 600 

gradients between phases; 3) the kinetic isotope fractionation parameter (β) (Richter 601 

et al., 1999). The isotopic diffusivities and β are related by the expression D2/D1 = 602 

(m1/m2)β, where D1 and D2 are the diffusivities of isotopes with the masses m1 and m2 603 

(Richter et al., 2003).  604 

From a mass balance point of view, it would be hard to alter the Mg budget of 605 

the bulk mantle by diffusive interaction with a relatively small volume melt or fluid. 606 

This suggests that diffusive alteration of Mg can occur solely after xenolith removal 607 

from its source. Although the xenolith has a much higher Mg content than the melt, 608 

the small volume of the xenolith relative to the entraining flow means there is still 609 

sufficient Mg to affect its bulk composition. 610 

 Li diffusion may result from the high incompatible element contents of the 611 

entraining melts, such that their Li concentrations exceed those in equilibrium with 612 

the typically melt-depleted mantle xenoliths (Jeffcoate et al., 2007). Further, an 613 

increase in the partition coefficient of Li during lava cooling may also lead to 614 

diffusion of Li from the melt into the xenolith (Jeffcoate et al., 2007; Gallagher and 615 

Elliott, 2009). The driving force of Mg isotope fractionation is less clear, as the 616 

peridotites frequently have higher Mg# than would be anticipated for equilibrium with 617 

their host basalts. We tentatively suggest that Mg diffusion is driven by the need to 618 

charge balance during the dehydration of nominally anhydrous minerals (Bell et al., 619 

2004; Kohn and Grant, 2006), as they approach the surface and degas. Our 620 

observations appear to implicate Mg diffusion into the xenoliths, which is consistent 621 

with this hypothetical mechanism.   622 

The basic scenario envisaged for the model assumes that small spherical 623 

xenoliths, with a starting composition equal to the fertile mantle, interact with large 624 
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(effectively infinite) volumes of melt (Crank, 1975). Rather than assuming that each 625 

xenolith is a solid sphere (which would result in only the xenolith boundaries 626 

becoming affected by diffusion), we assume that fast transport occurs along all the 627 

xenolith grain boundaries (Dohmen et al., 2010), followed by diffusion into individual 628 

crystals. The model integrates the crystal data to acquire a whole-rock xenolith 629 

isotope ratio, which initially becomes isotopically lighter as Li and Mg diffuse in, and 630 

eventually returns to an equilibrium value with time (Fig. 9, shown for crystal 631 

diameters of 1mm). The relative distance the isotopic anomalies of Li and Mg can 632 

diffuse in a given time is determined by the relative diffusivities DMg/DLi, and this 633 

parameter is therefore key. In contrast, the relative chemical potential gradients and β 634 

control the depths of the troughs. The model uses chemical gradients and β values that 635 

best-fit our data, and are similar to those established experimentally (Richter et al., 636 

2003; Richter et al., 2008; Richter et al., 2009) (Fig. 10).  637 

In theory diffusive influx of Mg should result in olivine rims with elevated Mg 638 

concentrations. One of the light samples, Tok 6-3, was analysed with an electron 639 

micro-probe. No MgO gradient could be resolved, with the uncertainty of ±0.4 wt%. 640 

This gives an upper limit for diffusional modelling: given our proposed β of ~0.1-0.15 641 

(see below), to perturb a 2mm diameter olivine from a primitive starting composition 642 

to the composition measured now, the perturbed rim would require a width of 3-5µm. 643 

In addition, even if the MgO gradient were larger, the resolution of the electron 644 

micro-probe would not be sufficient to resolve the rim.  645 

Figure 10 shows the results of the modelled co-diffusion of Li and Mg. Each 646 

line of constant DMg/DLi represents the evolving xenolith composition with the arrows 647 

indicating direction of increasing time: the isotopic trough of the faster diffusing 648 

element (Li, except when DMg/DLi = 1) arrives first, driving the path to lighter values 649 

along the y-axis (δ7Li). Following this, the second trough (that of Mg) arrives, driving 650 

the path to lighter x-axis (δ26Mg) values. Bearing in mind the analytical uncertainty 651 

on the data, the isotopically lightest values appear to be best modelled by setting 652 

DMg/DLi = 0.25-1, implying Mg diffusivity that is within an order of magnitude of that 653 

of Li.  The relative diffusivities during Li tracer diffusion and Mg interdiffusion have 654 

been experimentally shown to vary by several orders of magnitude, depending on the 655 

host material. Thus in basaltic melts DMg/DLi ~0.01 (Richter et al., 2003), but in 656 

olivine the relative diffusivities are thought to be within an order of magnitude 657 
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(DMg/DLi ~0.1) (Dohmen et al., 2010), a factor of 3 (DMg/DLi ~0.3) (Qian et al., 2010) 658 

or even less than a factor of 1-2 (DMg/DLi ~0.6-1.15, depending on crystallographic 659 

axis) (Spandler and O'Neill, 2010), i.e. well within the bounds required by our model. 660 

This behaviour has been explained by suggesting that element diffusivity in olivine is 661 

controlled by cation site preference, charge balance mechanisms and point-defect 662 

concentrations (Spandler and O'Neill, 2010).  663 

Given that olivine is the major host of both Li (Seitz and Woodland, 2000) and 664 

Mg in the mantle, diffusion in olivine would be expected to be the rate-limiting step to 665 

evolving bulk xenolith Mg and Li isotope composition. Since the diffusivities of Li 666 

and Mg in olivine are sufficiently well known (Dohmen et al., 2010), our model can 667 

predict the time required for the isotopic perturbations to occur (i.e. the time elapsed 668 

between removal of the xenolith from the wall-rock, and attainment of the closure 669 

temperature for diffusion; Fig. 9). The model is simplified, because it does not factor 670 

in decreasing diffusivity with cooling, but rather assumes that the initial temperature 671 

is maintained until closure occurred. As such the model can only provide minimum 672 

estimates of diffusion duration. As shown in Fig. 9, attainment of lowest δ7Li and 673 

δ26Mg values is relatively rapid (~5-10 years), whereas re-equilibration occurs over 674 

much longer timescales (>30 years). This suggests that the isotopically lightest 675 

samples were entrained and experienced diffusive ingress of Li and Mg for ~10 years. 676 

This timescale is approximately an order of magnitude greater than cooling of even 677 

thick basaltic lava flows. Calculations suggest that for a cooling period of 10 years, a 678 

flow ~50m thick would be required, whereas in reality basaltic flows are rarely more 679 

than ~5m thick, and cool on the order of weeks (Flynn et al., 1994). This strongly 680 

suggests that the diffusive perturbation was imparted to the xenoliths during processes 681 

that occurred prior to eruption, but post removal of the xenolith from the wall rock.  682 

 Assuming the model parameters are correct, this would imply that the 683 

xenolith transit time for these isotopically light samples was on the order of 10 years, 684 

and suggests storage of the xenoliths for a period of years between entrainment and 685 

final cooling. The small role played by post-eruptive cooling rate seems at odds with 686 

the empirical relationship observed by Ionov and Seitz, 2008 for diffusive 687 

perturbation of xenoliths depending on their mode of eruption, i.e. in rapidly cooled 688 

pyroclastic deposits or slowly cooled flows. We instead suggest that the key timescale 689 

is that between host-magma degassing, which we infer to drive Mg diffusion, and 690 
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eruption. The H+ content of kimberlitic xenoliths is more than sufficient for its 691 

replacement by Mg to perturb the bulk xenolith δ26Mg by ~0.2‰ (Bell et al., 2004; 692 

Grant et al., 2006; Kohn and Grant, 2006; Grant et al., 2007). A magma degassed 693 

years before eruption should have diffusionally perturbed xenoliths but is likely to 694 

erupt as a flow. In contrast, undegassed magmas are likely to erupt explosively and 695 

have more pristine xenoliths.  696 

 697 

5.6 Inter-mineral Mg isotope fractionation 698 

 Young et al. (2009) calculated theoretical equilibrium Mg isotope 699 

fractionation between pure forsterite and diopside, orthoenstatite and spinel. Forsterite 700 

should be the isotopically lightest of these minerals, which is substantiated by results 701 

from both this and other studies (Young et al., 2002; Wiechert and Halliday, 2007; 702 

Handler et al., 2009; Young et al., 2009; Chakrabarti and Jacobsen, 2010). Theoretical 703 

equilibrium values predict a forsterite-diopside Δ26Mg ~ 0.08-0.1‰ in the temperature 704 

range 850-1000°C. Measured values range from 0.04-0.31‰ (this study; Fig. 6), 705 

<0.24‰ (Handler et al., 2009), <0.23‰ (Chakrabarti and Jacobsen, 2010), 0.11-706 

0.14‰ (Wiechert and Halliday, 2007). This variation may be due to varying 707 

mineralogy, or kinetic effects on top of any equilibrium fractionation.  708 

The anomalously heavy δ26Mg of wehrlite, Tok 10-1 is readily related to its 709 

high modal abundance of isotopically heavy cpx (Table 3). This sample has seen 710 

complete replacement of opx by cpx (Ionov et al., 2005b). It also shows the greatest 711 

Δ26Mgcpx-ol which may indicate a non-equilibrium component in this fractionation 712 

factor (Fig. 6). During pyroxene replacement, Mg from opx will be diffusively lost to 713 

the melt, and replaced by Ca, potentially driving the δ26Mg of the residual pyroxene 714 

isotopically heavy (this process also explains why there is no overriding correlation 715 

for our samples between isotope ratios and mineral ratios such as cpx/ol). This sample 716 

also has high [Li], suggesting that the infiltrating melt that caused wehrlitisation was 717 

Li-rich. The high δ7Li of Tok 10-1 could therefore just reflect the isotopic 718 

composition of this interacting melt. Alternatively, given the high [Li] of the 719 

wehrlitised mantle, the concentration gradient thus established with the surrounding 720 

mantle resulted in subsequent diffusive loss of Li and an increase in the δ7Li of the 721 

residue. This suggests that the relatively high δ26Mg and δ7Li of this sample may be 722 
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unrelated in mechanism, although both may ultimately have been caused by 723 

metasomatic wehrlitisation. 724 

In general, the wehrlite sample group shows high variability in both δ7Li and 725 

δ26Mg. This is in agreement with Yang et al. (2009), who reported δ26Mg variability 726 

of 0.34‰ in wehrlites from the North China craton. However, Yang et al. (2009) 727 

reported low δ26Mg values for some wehrlites (down to -0.44‰). Taken together with 728 

results from this study, this may suggest that the isotope composition of wehrlites are 729 

strongly dependent on the composition of the wehrlitising agent, and the mechanism 730 

of mineral replacement that occurs during these reactions.  731 

If pyroxenes in equilibrium with olivine are ~0.06-0.08 (δ26Mg, opx) and 732 

0.09-0.13‰ (cpx) (Young et al., 2009) heavier, then it would be expected that fertile 733 

mantle peridotites are ~0.03‰ heavier than analyses of their constituent olivines.  734 

This could account for a degree of the minor offset between our data for bulk samples 735 

and those of Handler et al. (2009) for olivines, but such small differences are difficult 736 

to discern.  737 

 738 

5.7 Arc peridotites  739 

The Avacha peridotite xenoliths are thought to represent fragments of mantle 740 

wedge lithosphere which sits above the subducting Pacific plate at the Kurile-741 

Kamchatka trench (Ionov and Seitz, 2008; Ionov, 2010), and as such probably have 742 

been affected by percolation of metasomatic fluids which initially derive from the 743 

dehydrating slab. These initial fluids are generally assumed to be concentrated in Li 744 

(≤200 µg/g (Ryan and Langmuir, 1987; Marschall et al., 2007a)) and preferentially 745 

enriched in 7Li (Chan and Kastner, 2000; Tomascak et al., 2000; Tomascak et al., 746 

2002; Elliott et al., 2004), in theory causing the hydrated wedge to become more 747 

concentrated in Li and isotopically heavier (Tomascak et al., 2002). In contrast, given 748 

the low Mg content of the crust, and therefore the subducting slab, it is unlikely that 749 

fluids from slab dehydration could resolvably affect the Mg budget of the mantle 750 

wedge.  751 

The δ7Li of our arc peridotites ranges from 2.5 to 6.0‰, i.e. from a 752 

composition slightly lighter than that of the primitive mantle to one which is much 753 

heavier. The Avacha samples also show a significant co-variation between δ7Li and 754 

[Li] (r2=0.66) as well as FeO (r2=0.77; Fig. 11) and MnO  (r2=0.6), and are negatively 755 
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correlated with Mg#. The positive correlation of δ7Li and [Li] with FeO argues 756 

against the hypothesis (Ionov 2010) that FeO and Mg# variations in the Avacha suite 757 

stem from differences in melting depth (FeO in residues decreases with depth), 758 

because there is no reason why δ7Li and [Li] should be lower in deeper melting 759 

residues as well.  760 

Mineral separate analysis of some of the Avacha samples (Table 3) show 761 

coexisting olivine, orthopyroxene and clinopyroxene to be in inferred elemental 762 

(Woodland et al., 2002) and isotopic (Jeffcoate et al 2007) equilibrium for Li. These 763 

data agree with other Li studies from Avacha (Ionov and Seitz, 2008; Halama et al., 764 

2009). Inter-mineral δ26Mg values are also within reproducibility of theoretical 765 

equilibrium fractionation (Young et al., 2009). This implies that the δ7Li and δ26Mg of 766 

these arc xenoliths have not been diffusively altered during transport to the surface 767 

but represent signals from deeper in the mantle.  768 

Thus the correlated enrichments in δ7Li, [Li], FeO and MnO are likely due to 769 

metasomatism by an isotopically heavy, Fe-rich, slab-derived fluid. In addition, there 770 

is a positive correlation between δ26Mg and FeO (r2=0.94, thus leading to the apparent 771 

co-variation between δ7Li and δ26Mg in Fig. 8), although individual samples are only 772 

just resolvable at the 2s.e. level. The xenoliths with high FeO will have experienced 773 

greater influx of Fe, and therefore interdiffusional removal of Mg, potentially driving 774 

xenolith δ26Mg towards higher values. Ionov (2010) inferred that the Avacha 775 

peridotites may have been affected by melt metasomatism soon after their partial 776 

melting (i.e. in the asthenosphere), and also by fluid infiltration in the lithosphere 777 

shortly before their transport to the surface. The latter event produced minor 778 

amphibole and enrichments in incompatible trace elements, which are 779 

petrographically clear as veins (Halama et al., 2009; Ionov, 2010). The δ7Li or [Li] 780 

show no correlation (r2≤0.1) with La, Sr, Ba or modal amphibole, although the sample 781 

with most amphibole does have high δ7Li and δ26Mg.  Hence for the suite as a whole 782 

there is no control of the most recent event on δ7Li. We conclude that the enrichment 783 

in δ7Li and [Li] occurred in an older, asthenospheric event. 784 

If the high δ7Li signal in these arc peridotites stems from metasomatism in the 785 

asthenosphere, then this suggests that it represents an isotopically heavy mantle 786 

wedge caused by dehydration of the subducting slab. The dehydrated slab is thought 787 

to become isotopically lighter by δ7Li ≤3‰ (Marschall et al., 2007b), whilst the slab-788 



25 

derived fluids are isotopically heavy, in turn causing the hydrated mantle wedge to 789 

also become isotopically heavy (Elliott et al., 2004). The Avacha xenoliths may 790 

therefore demonstrate that the hydrated wedge is indeed enriched in 7Li, and that this 791 

fractionation can survive emplacement to the surface (at least in xenoliths erupted in 792 

rapidly-cooled pyroclastic deposits). Given that the Avacha samples plot along a δ7Li 793 

vs. 1/[Li] mixing line, a simple mixing model (assuming that all samples interacted 794 

with a fluid of the same composition) suggests that the fluid component had a δ7Li ~ 795 

9‰.  796 

Although diffusion may alter the bulk rock Li and Mg isotopic compositions 797 

of slowly emplaced or cooled degassed xenoliths, more rapid processes, and 798 

potentially a lack of degassing, appear to allow deep-mantle signatures to survive. 799 

Trends towards isotopically heavy Li have been reported in MORB glasses, and were 800 

interpreted as recycling of an isotopically heavy mantle component into the mid-801 

ocean ridges (Elliott et al., 2006). It is now clear that the metasomatised mantle wedge 802 

is a plausible source of this isotopically heavy Li reservoir, which is viscously 803 

coupled to the down-going slab, and so mixed into the convecting mantle.  804 

 805 

6.0 Conclusions 806 

This study has analysed Li and Mg isotopes in whole-rock chondrites and 807 

peridotites from several global localities. Carbonaceous chondrites give: δ7Li = 3.3 ± 808 

1.4‰ (2sd), δ25Mg = -0.15 ± 0.08‰ and δ26Mg = -0.29 ± 0.16‰. Enstatite chondrites 809 

have lower δ7Li than carbonaceous chondrites by ~2‰, possibly implicating their 810 

derivation from material that orbited closer to the early sun and underwent enhanced 811 

spallation due to its irradiation. This interpretation must be treated with caution, given 812 

the well-documented Li isotope heterogeneity in chondrites and needs to be tested 813 

using analyses of larger sample sizes. Analyses of fertile xenoliths that exhibit no 814 

evidence of diffusive perturbation of Li suggest that the composition of the bulk 815 

primitive mantle is δ7Li = 3.5 ± 0.5‰, δ25Mg = -0.10 ± 0.04‰ and δ26Mg = -0.21 ± 816 

0.07‰, within error of carbonaceous and ordinary chondrites. 817 

In contrast, the total measured range in xenolithic, continental bulk peridotites 818 

with variable amounts of metasomatism and melt depletion is ~13‰ (δ7Li) and 819 

~0.4‰ (δ26Mg). These ranges are easily analytically resolvable, and extend well 820 

beyond the possible values of chondrites or the fertile mantle. A co-variation between 821 
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δ7Li and δ26Mg suggest that both isotope systems may be affected by the same 822 

process/processes. Diffusion is strongly implicated in generating the general trend 823 

from the fertile mantle towards isotopically light ratios. This co-variation has been 824 

modelled and the isotopically lightest samples suites require relative diffusivities of 825 

DMg/DLi ~0.25-1, in keeping with experimental studies that have determined DMg/DLi 826 

~0.1-1 in olivine. These known diffusivities of Li and Mg in olivine allow calculation 827 

of cooling times of the xenoliths of ~5-10 years for isotopically light samples, 828 

approximately an order of magnitude longer than the cooling to closure temperature 829 

for the basaltic lava flows in which these xenoliths were erupted. This suggests 830 

diffusive perturbation occurs during period of storage post-entrainment, but pre-831 

eruption. In contrast, xenoliths erupted in pyroclastic deposits do not show 832 

anomalously light δ7Li and δ26Mg. We speculate that degassing of magmas both 833 

drives diffusion of Mg (and Li) into entrained xenoliths, to charge balance hydrogen 834 

loss from the minerals, and also influences the subsequent eruptive style (explosive or 835 

effusive). 836 

In the pyroclastic-hosted Avacha arc peridotites, Li isotopes trend to heavier 837 

values at greater Li, FeO and MnO concentrations. This suggests that the Li isotope 838 

system in the Avacha suite may have been affected by ingress of slab-derived fluids 839 

with high δ7Li, thus providing the isotopic signal of the hydrated mantle wedge.  840 

The range in [Li], [Mg], δ7Li and δ26Mg in our xenoliths, which have large 841 

variations in melt extraction, metasomatism and emplacement histories, suggest that 842 

small xenoliths may be altered by diffusive isotope fractionation when emplaced in 843 

large volumes of melts. This makes it difficult to determine pertinent information on 844 

light elements in the mantle from such xenoliths, and such data should be rather 845 

obtained on large pyroclastic-hosted xenoliths.  846 
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Figure 1. Primitive mantle normalised (Sun, 1982) La/Sm ratios plotted against Mg#, 
molar Mg/[Fe(II)+Mg], for all analysed peridotites. Samples are plotted 
according to geodynamic locality. Data sources are as follows: off-craton 
peridotites (Tariat and Dariganga) Ionov (2007), Ionov and Hofmann (2007); 
(Vitim) Ionov et al. (2005a); arc peridotites (Avacha) Ionov (2010); cratonic 
peridotites and wehrlites (Tok) Ionov et al. (2005a), Ionov et al. (2005b). Solid 
black points are those taken as representative of the fertile mantle (see text for 
details).  The stars show compositions for primitive mantle (PM) and depleted 
MORB mantle (DMM) taken from Sun, 1982, McDonough and Frey, 1989, 
Workman and Hart, 2005. 

 
Figure 2. Measured δ26Mg (±2se) of the DSM-3 standard doped with variable 

amounts of Ni plotted against Mg/Ni (weight ratio) of mixture to investigate a 
possible matrix influence. No effect is evident.  

 
Figure 3. Compilation of analyses of USGS standards both measured by different 

protocols in this study and by others. Open diamonds represent analyses from 
this study. Open circles are published data. (1) Wiechert et al., 2007; (2) 
Handler et al., 2009; (3) Huang et al., 2011; (4) Bourdon et al., 2010; (5) 
Huang et al., 2009; (6) Wombacher et al., 2009; (7) Tipper et al., 2008; (8) 
Teng et al., 2007; (9) Baker et al., 2005; (10) Bizzarro et al., 2005; (11) 
Bizzarro et al., 2011; (12) Pogge von Strandmann et al., 2008. Error bars 
represent the external uncertainty (2sd) reported by each study.  

 
Figure 4. (a) δ7Li vs. [Li] for bulk meteorite samples. The error bars indicate the 2s.d. 

external uncertainty of the procedure used in this study. The small grey 
symbols represent data from other studies (James and Palmer, 2000; Sephton 
et al., 2004, 2006; Magna et al., 2006; Seitz et al., 2007). Two eucrites, with 
high [Li], plot off scale. (b) Bulk chondrite δ7Li vs. δ26Mg data from this 
study.  

 
Figure 5. a) δ7Li vs. [Li] for the bulk xenolith samples. The grey box represents the 

range of this study’s chondrite analyses. The error bars represent the 2s.d. 
external uncertainty of the analyses. The small grey symbols represent 
published whole-rock or reconstituted whole-rock data (Brooker et al., 2004; 
Seitz et al., 2004; Magna et al., 2006; Jeffcoate et al., 2007; Magna et al., 
2008; Aulbach et al., 2009). Solid black points are those taken as 
representative of the fertile mantle (see discussion for details). b) Bulk 
peridotite δ26Mg as a function of Mg#. The error bars represent the 2s.d. 
external uncertainty of the analyses. The small grey symbols represent 
published whole-rock data (Wiechert et al., 2007; Yang et al., 2009; Teng et 
al., 2010, Bourdon et al., 2010; Chakrabarti et al., 2010; Huang et al., 2011). 
Solid black points are those taken as representative of the fertile mantle (see 
discussion for details). 

 
Figure 6. (a) Difference in δ26Mg between coexisting olivine and clinopyroxene, as a 

function of whole rock δ26Mg. Legend as in Fig. 5. The dashed lines represent 
the theoretical fractionations, as calculated by Young et al., 2009, for the 
temperature range inferred from major element geothermometry of the 
xenoliths studied. (b) Difference in δ7Li between coexisting olivine and 
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clinopyroxene, as a function of whole-rock δ7Li. Where not measured by this 
study, data were taken from Rudnick and Ionov, 2007, Jeffcoate et al., 2007, 
Ionov and Seitz, 2008, Magna et al., 2006.  

 
Figure 7. Standard addition plot of JP-1 mixtures with CAM-1, showing that JP-1 is 

not as isotopically heavy as suggested by Wiechert and Halliday (2007). See 
text for details. Error ellipses represent the 2s.d. of the samples (black 
ellipses), and the 2s.d. of JP-1 and CAM-1 (grey ellipses). Regression and 
error parabola were calculated using formulae from York (1966). 

 
Figure 8. Co-variation between δ7Li and δ26Mg for the bulk xenoliths. The light grey 

box represents the range of this study’s chondrite analyses. The error bars 
represent the 2s.d. external uncertainty of the analyses. Solid black points are 
those taken as representative of the fertile mantle (see discussion for details). 

 
Figure 9. Modelled bulk xenolith isotope ratios as a function of cooling time. Model 

parameters are as shown in Figure 10.  
 
Figure 10. Modelled covariation of Li and Mg isotope ratios by diffusional 

fractionation. The legend provides details of the β, relative diffusivities and 
activity gradients used in the calculations See text for model details. Li 
diffusivity (DLi) is from Dohmen et al. (2010) at ~1250°C. βLi is from Richter 
et al. (2003), and βMg is the best-fit value. Symbols as in Figure 5.  

 
Figure 11. (a) δ7Li as a function of [Li] for the Avacha xenoliths. The error bars 

represent the 2s.d. external uncertainty of the analyses. Open symbols 
represent analytical repeats. (b) Avacha δ7Li data as a function of FeO. 
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Li FeO total MgO Mg# !
7Li 2s.e. !

25Mg 2s.e. !
26Mg 2s.e. "

25Mg !
26Mg* sample weight Emplacement

(ppm) (wt%) (wt%) (‰) (‰) (‰) (‰) (‰) (g)

Chondrites

Carbonaceous chondrites

Orgueil (BM.36104) CI1 1.2 4.1 0.1 -0.08 0.01 -0.15 0.02 0.00 0.0023 0.01289

Orgueil CI1 1.5 2.6 0.1

Karoonda (BM.1931,489) CK4 0.9 3.8 0.1 -0.16 0.01 -0.31 0.01 0.00 0.0060 0.01201

Murchison (BM.1970,6) CM2 1.0 3.4 0.04 -0.13 0.01 -0.23 0.02 -0.01 0.0109 0.02401

Murchison CM2 1.5 4.4 0.2

Kainsaz (BM.1965,395) CO3.2 1.4 3.5 0.03 -0.16 0.01 -0.28 0.01 -0.01 0.0250 0.02378

Ornans CO 1.3 3.1 0.2

Felix CO3 1.2 3.1 0.1

NWA 801* CR2 0.7 1.6 0.1

Allende (BM.1988,M24) CV3 1.2 2.7 0.1 -0.19 0.02 -0.36 0.02 0.00 0.0001 0.02002

rpt 0.2 -0.19 0.02 -0.37 0.03 0.00 0.01022

Allende chondrule 1.3 -0.3 0.2

Leoville CV3 1.7 2.3 0.04

Ordinary chondrites

Barratta* (BM.1989,M31) L4 1.8 2.5 0.04 -0.16 0.01 -0.32 0.01 0.00 -0.0030 0.03821

Tenham (BM.1935,785) L6 1.1 2.4 0.2 -0.13 0.01 -0.26 0.03 0.00 -0.0030 0.02126

Barwell L6 1.5 3.0 0.1

Chainpur LL3 2.1 2.4 0.03

Parnallee (BM.34792) LL3.6 1.5 3.9 0.2 -0.19 0.01 -0.38 0.01 0.01 0.0025 0.01608

Parnallee LL3.6 1.8 2.7 0.1

Dhurmsala (BM.96262) LL6 1.1 2.7 0.02 -0.15 0.02 -0.28 0.02 0.00 0.0072 0.03433

Ceniceros (BM.1989,M31) H3.7 1.2 2.4 0.1 -0.15 0.01 -0.28 0.02 0.00 -0.0001 0.02239

Butsura (BM.34795) H6 1.8 2.5 0.1 -0.09 0.01 -0.18 0.03 0.00 -0.0060 0.03393

rpt 3.0 0.1 0.01015

Ogi H6 (W2) 1.4 1.6 0.2

Tieschitz H/L3 1.4 4.3 0.1

Enstatite chondrites

Indarch (BM.1921,23) EH4 2.2 2.0 0.1 -0.12 0.01 -0.21 0.01 -0.01 0.0016 0.02288

Abee (BM.1997,M7) EH4 1.6 2.8 0.2 -0.14 0.01 -0.27 0.01 0.00 0.0068 0.01254

St. Mark's (BM.1970,339) EH5 1.3 0.5 0.1 -0.17 0.01 -0.33 0.02 0.00 -0.0018 0.01842

rpt -0.14 0.02 -0.25 0.02 0.00 0.00844

Daniel's Kuil EL6 1.7 0.2

Khairpur (BM.51366) EL6 1.6 1.2 0.1 -0.12 0.02 -0.22 0.03 0.00 0.0040 0.01414

Yilmia* (BM.1972,132) EL6 1.2 2.1 0.1 -0.11 0.01 -0.23 0.01 0.01 -0.0154 0.01390

Hvittis (BM.86754) EL6 1.7 1.5 0.2 -0.15 0.01 -0.27 0.02 -0.01 0.0125 0.00934

Achondrites

Khor Temiki Aubrite 0.6 -0.3 0.1

Stannern Eucrite 3.4 0.2

Pasamonte Eucrite 12.2 3.7 0.1

Camel Donga Eucrite 7.2 2.8 0.1

Peridotites

Tariat

4500-19d sp hrz 0.5 7.60 45.78 0.915 -1.6 0.1 -0.17 0.01 -0.34 0.02 0.01 0.0083 ?

Mo-101 sp lhz 1.6 8.04 37.17 0.892 2.6 0.2 -0.14 0.01 -0.26 0.02 -0.01 -0.0121 ?

Hr-25 sp lhz 1.2 13.10 35.35 0.828 4.9 0.2 -0.09 0.01 -0.16 0.01 -0.01 0.0188 P

4500-18 sp hrz 1.3 7.28 46.56 0.919 -3.9 0.1 -0.17 0.01 -0.35 0.01 0.01 0.0170 ?

rpt -3.6 0.1 -0.18 0.01 -0.38 0.02 0.01 0.0167

8531-40 sp hrz 3.8 8.80 44.63 0.900 1.8 0.1 -0.15 0.02 -0.29 0.01 0.00 0.0171 ?

8530-24 sp hrz 1.5 8.85 43.57 0.898 2.1 0.1 -0.13 0.01 -0.25 0.02 -0.01 0.016 ?

Z-9 sp lhz 2.1 9.32 40.76 0.886 3.5 0.1 -0.06 0.01 -0.13 0.02 0.01 -0.0092 P

4230-16 phl sp lhz 1.8 8.4 36.94 0.887 3.9 0.2 -0.11 0.01 -0.21 0.01 0.00 0.0036 P

rpt 3.8 0.1 -0.10 0.01 -0.19 0.01 0.00

Dariganga

BN-8 sp hrz 0.9 7.13 45.21 0.919 2.0 0.1 -0.11 0.01 -0.22 0.01 0.00 -0.0183 P

8505-2 sp hrz 1.6 46.00 0.915 3.3 0.2 -0.06 0.01 -0.16 0.01 0.02 -0.0011 P

Vitim

314-56 sp lhz 1.9 8.38 37.18 0.888 3.7 0.2 -0.09 0.02 -0.19 0.01 0.01 0.0115 P

313-102 grt lhz 1.6 8.16 37.05 0.884 3.3 0.01 -0.11 0.01 -0.22 0.01 0.00 0.0149 P

314-58 sp lhz 1.2 8.23 38.58 0.893 2.5 0.1 -0.11 0.01 -0.21 0.01 0.00 -0.0108 P

313-105 grt lhz 1.9 8.12 40.37 0.899 2.5 0.1 -0.12 0.01 -0.23 0.01 0.00 0.0165 P

Avacha

Av-1 sp hrz 1.7 8.11 45.56 0.909 6.0 0.1 -0.08 0.01 -0.14 0.01 -0.01 0.0176 P

rpt 1.7 5.9 0.2 -0.08 0.01 -0.15 0.01 -0.01 0.0092

Av-4 sp hrz 1.0 8.07 43.73 0.906 4.2 0.2 -0.09 0.01 -0.16 0.02 0.00 0.0191 P

Av-6 sp hrz 1.6 8.24 45.97 0.909 5.4 0.1 -0.03 0.01 -0.06 0.01 0.00 0.0194

rpt -0.06 0.01 -0.13 0.01 0.01 P

Av-8 sp hrz 1.3 7.74 44.50 0.911 3.9 0.2 -0.10 0.02 -0.19 0.02 0.00 0.0123

rpt -0.12 0.01 -0.23 0.01 0.00 P

Av-16 sp hrz 1.1 7.55 46.20 0.916 2.5 0.1 -0.14 0.01 -0.26 0.01 -0.01 0.0167

rpt -0.11 0.01 -0.20 0.01 0.00 P

rpt 1.1 2.7 0.2 -0.13 0.01 -0.25 0.02 0.00 -0.0056

Av-17 sp hrz 1.3 7.83 46.54 0.914 3.3 0.1 -0.10 0.01 -0.19 0.01 -0.01 0.0212

rpt 1.3 3.0 0.04 -0.12 0.01 -0.23 0.01 0.00 -0.0088 P

Tok

Lherzolite-Harzburgite series

Tok 2-9 hrz 2.1 7.76 45.78 0.913 4.7 0.2 -0.13 0.01 -0.26 0.01 0.00 -0.0078 F

Tok 6-0 hrz 2.7 7.32 46.31 0.919 -2.5 0.1 -0.16 0.01 -0.31 0.02 0.00 0.0196 F

rpt 2.7 -2.6 0.1 -0.15 0.01 -0.28 0.01 -0.01 -0.0021

Tok 6-1 lhz 1.4 8.32 38.02 0.891 2.9 0.2 -0.07 0.01 -0.15 0.01 0.01 -0.0109 F

rpt 1.4 2.5 0.02 -0.08 0.01 -0.15 0.02 0.00 0.0142

Tok 6-3 lhz 2.4 7.39 40.31 0.907 -3.1 0.03 -0.16 0.01 -0.33 0.01 0.01 -0.0055 F

Tok 10-2 hrz 3.1 7.60 45.66 0.915 1.7 0.2 -0.12 0.02 -0.25 0.01 0.00 0.0138 F

Lherzolite-Wehrlite series

Tok 2-3 low-opx lhz 2.9 9.95 41.05 0.880 2.3 0.1 -0.09 0.01 -0.20 0.01 0.01 -0.0221 F

Tok 2-10 low-opx lhz 2.9 9.43 37.70 0.877 -2.2 0.1 -0.15 0.01 -0.29 0.01 0.00 0.0084 F

Tok 3-2 low-opx lhz 2.3 9.35 41.87 0.889 4.6 0.1 -0.08 0.01 -0.15 0.01 0.00 -0.0166 F

Tok 3-22 whl 3.1 11.82 40.52 0.859 1.2 0.04 -0.14 0.01 -0.28 0.01 0.00 -0.0196 F

Tok 8-10 whl 3.1 9.94 40.68 0.879 4.3 0.1 -0.08 0.01 -0.18 0.01 0.01 -0.0145 F

Tok 10-1 whl 4.8 11.78 36.86 0.848 8.1 0.2 -0.01 0.01 0.00 0.01 -0.01 0.0218 F

rpt 7.9 0.1 0.04 0.02 0.06 0.01 0.00

Tok 10-3 whl 3.3 13.53 39.47 0.839 2.0 0.2 -0.07 0.01 -0.16 0.01 0.01 -0.0112 F

Tok 10-11 lhz 2.2 14.38 39.09 0.829 4.4 0.1 -0.10 0.01 -0.20 0.01 0.00 0.0158 F

rpt -0.08 0.01 -0.16 0.01 0.00
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Table 1. Results from measured whole-rock peridotites and meteorites. Peridotite 
FeO, MgO and Mg# data from Mongolia: Ionov (2007), Ionov and Hofmann 
(2007); Vitim: Ionov et al. (2005a); Avacha: Ionov (2010); Tok: Ionov et al. 
(2005a), Ionov et al. (2005b). Repeats reported are the results of complete re-
analysis, including re-dissolution. Chondrite δ26Mg* data are internally 
normalised, using 25Mg/24Mg = 0.12663 and externally normalised to 
bracketing DSM-3. Sample weights are given for meteorites (see discussion 
on heterogeneity), but not for terrestrial samples. For the latter, several kg 
were crushed, and therefore small-scale heterogeneity is not an issue.  

*: denotes Find 
Emplacement type: P = pyroclastic; F = lava flow 
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Standard dissolutions n !
7Li (‰) 2sd

JP-1 11 11 3.0 0.2

BHVO-2 26 31 4.7 0.2

BCR-2 17 18 2.6 0.3

JB-2 24 28 4.9 0.3

Standard Reference Introduction method Chemistry dissolutions n !
25Mg (‰) 2sd !

26Mg (‰) 2sd

JP-1 This study Qtz spray chamber HCl 3 6 -0.12 0.04 -0.25 0.04

Qtz spray chamber HNO3 11 19 -0.13 0.05 -0.25 0.05

Apex HNO3 12 12 -0.12 0.04 -0.24 0.05

Aridus (med. res.) HNO3 1 2 -0.12 0.02 -0.23 0.03

Handler et al., 2009 7 -0.12 0.02 -0.23 0.03

Wiechert & Halliday, 2007 +0.03 ?

BHVO-2 This study Qtz spray chamber HCl 1 4 -0.14 0.04 -0.26 0.06

Qtz spray chamber HNO3 11 21 -0.12 0.05 -0.24 0.06

Apex HNO3 7 8 -0.13 0.03 -0.24 0.05

Bizzarro et al., 2011 10 -0.10 0.03 -0.19 0.07

Pogge von Strandmann et al., 2008 -0.13 0.08 -0.25 0.11

Wiechert & Halliday, 2007 7 -0.06 0.04 -0.14 0.08

Bizzarro et al., 2005 9 -0.08 0.06 -0.16 0.10

BCR-2 This study Qtz spray chamber HNO3 5 8 -0.13 0.03 -0.25 0.06

Apex HNO3 6 6 -0.13 0.04 -0.26 0.05

Huang et al., 2011 ? -0.34 0.12

Bourdon et al., 2010 29 -0.06 0.02 -0.12 0.04

Huang et al., 2009 18 -0.14 0.08 -0.30 0.11

Wombacher et al., 2009 4 -0.07 0.06 -0.14 0.11

Tipper et al., 2008 -0.09 0.05 -0.16 0.11

Teng et al., 2007 28 -0.16 0.09 -0.30 0.08

Baker et al., 2005 15 -0.09 0.07 -0.19

Bizzarro et al., 2005 7 -0.09 0.17 -0.17 0.35

JB-2 This study Qtz spray chamber HCl 2 4 -0.13 0.04 -0.24 0.05

Qtz spray chamber HNO3 8 14 -0.11 0.02 -0.21 0.04

Apex HNO3 6 7 -0.11 0.03 -0.21 0.05

Pogge von Strandmann et al., 2008 -0.12 0.08 -0.24 0.12

Wiechert & Halliday, 2007 5 -0.09 0.02 -0.18 0.04

Bizzarro et al., 2005 8 -0.08 0.07 -0.15 0.13

CAM-1 This study Qtz spray chamber 43 -1.35 0.03 -2.62 0.04

HNO3 5 -1.38 0.03 -2.65 0.05

Apex 45 -1.36 0.02 -2.63 0.04

HNO3 2 -1.37 0.04 -2.63 0.05

Aridus (med. res.) 8 -1.35 0.04 -2.59 0.06

Huang et al., 2011 ? -2.63 0.11

Chakrabarti and Jacobsen 2010 -1.33 0.14 -2.61 0.28

Pogge von Strandmann, 2008 -1.38 0.06 -2.64 0.08

Tipper et al., 2008 -1.34 0.05 -2.59 0.08

Pogge von Strandmann et al., 2008 -1.42 0.10 -2.78 0.15

Tipper et al., 2006 -1.34 0.08 -2.60 0.14

Pearson et al., 2006 -1.33 0.07 -2.58 0.14

Std. add. results

f (JP-1)

0.70 1 -0.96 0.03 -1.89 0.05

0.51 1 -0.74 0.01 -1.44 0.01

0.30 1 -0.46 0.03 -0.89 0.05  
Table 2. Measured standard data for Li and Mg isotopes. Mg isotope results from 

other studies are also reported, as are results from our standard addition 
experiment. The number of mass spectrometer analyses is represented by “n”, 
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whereas “dissolutions” represent complete re-analysis, including dissolution 
and chemistry.  
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!
7Li 2s.e. Li

(‰) (ppm)

Av1 sp hrz

olivine 5.4 0.2 1.4

opx 5.8 0.1 1.2

Av6 sp hrz

olivine 5.1 0.1 1.7

opx 5.6 0.2 0.7

cpx 4.7 0.2 1.0

calc. w.r. 5.1 0.1 1.5

!
25Mg 2s.e. !

26Mg 2s.e. "
25Mg

(‰) (‰)

Tok 6-3 lhz

olivine -0.18 0.01 -0.36 0.02 0.01

opx -0.16 0.01 -0.29 0.01 -0.01

cpx -0.13 0.02 -0.25 0.01 0.00

calc. w.r. -0.17 0.01 -0.34 0.01 0.00

Tok 10-1 whl

olivine -0.03 0.01 -0.06 0.01 0.00

olivine -0.06 0.01 -0.10 0.01 -0.01

opx 0.01 0.01 0.02 0.01 0.00

opx 0.00 0.01 -0.02 0.02 0.01

cpx 0.13 0.01 0.25 0.01 0.00

cpx 0.11 0.01 0.20 0.01 0.01

calc. w.r. -0.02 0.01 -0.05 0.01 0.01

Tok 10-11 lhz

olivine -0.11 0.01 -0.20 0.01 -0.01

olivine -0.07 0.01 -0.14 0.01 0.00

opx -0.05 0.02 -0.12 0.02 0.01

opx -0.03 0.01 -0.05 0.01 0.00

cpx 0.00 0.01 -0.01 0.01 0.00

cpx 0.00 0.01 0.00 0.01 0.00

calc. w.r. -0.08 0.01 -0.16 0.02 0.00

Av6 sp hrz

olivine -0.05 0.01 -0.11 0.01 0.01

opx -0.02 0.02 -0.05 0.02 0.01

cpx -0.03 0.01 -0.07 0.01 0.01

4230-16 phl sp lhz

olivine -0.11 0.01 -0.23 0.01 0.01

olivine -0.10 0.01 -0.20 0.02 0.00

opx -0.12 0.02 -0.25 0.02 0.01

opx -0.13 0.01 -0.26 0.01 0.00

cpx -0.05 0.01 -0.09 0.01 0.00

cpx -0.05 0.01 -0.10 0.01 0.00

calc. w.r. -0.10 0.01 -0.21 0.01 0.01

314-56 sp lhz

olivine -0.11 0.01 -0.23 0.01 0.01

olivine -0.10 0.01 -0.19 0.02 0.00

opx -0.09 0.01 -0.21 0.01 0.02

opx -0.13 0.01 -0.25 0.01 0.00

cpx -0.03 0.01 -0.05 0.01 -0.01

cpx -0.03 0.01 -0.06 0.01 0.00

Mo-101 sp lhz

olivine -0.12 0.01 -0.25 0.01 0.01

olivine -0.14 0.02 -0.30 0.02 0.01

opx -0.11 0.01 -0.23 0.01 0.01

opx -0.14 0.01 -0.25 0.01 -0.01

cpx -0.09 0.01 -0.18 0.01 0.00

cpx -0.06 0.01 -0.13 0.01 0.01

calc. w.r. -0.11 0.01 -0.24 0.02 0.01

San Carlos

olivine -0.14 0.01 -0.27 0.01 0.02

olivine -0.17 0.01 -0.34 0.01 0.00
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Table 3. Mineral separate isotope data. Listed repeats are full dissolution and 
chemical repeats. The calculated whole rock isotope ratios are given when all 
mineral abundances and concentrations are known (see Table 1 caption for 
references).  
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