222 research outputs found

    Fenton-Like Oxidation of 4−Chlorophenol: Homogeneous or Heterogeneous?

    Get PDF
    Heterogeneous Fenton-like catalysts have received considerable research attention because they could potentially be attractive for oxidative removal of organic contaminants from tertiary wastewater. However, process design is still hampered by insufficient understanding of the chemical pathways involved, and especially whether oxidation activity stems from heterogeneous surface chemistry or minute concentrations of dissolved metal ions in the homogeneous phase. Using inductively coupled plasma-optical emission spectroscopy (ICP-OES) in combination with pH monitoring and ultraviolet–visible spectroscopy (UV–vis) we have monitored the degradation of 4-chlorophenol (4-CP) over two Fenton-like heterogeneous systems, namely FeOx supported on TiO2 and CuFe2O4. We show conclusively that these systems proceed predominantly through a homogeneous route via dissolved metal ions from the solid phase catalysts. Control experiments with homogeneous Fe3+ or Cu2+ systems reveal that even minute concentrations (μM/subppm) of dissolved metal ions leached from the solid phases account for the observed 4-CP degradation rates in the heterogeneous systems. ICP-OES revealed that metal leaching was time-dependent and variable because of pH variations associated with changing acid release rates. Buffering solutions at pH 7.4 suppressed metal leaching (and hence 4-CP degradation) in the FeOx/TiO2 system, but not in others. For example, pH buffering did not entirely suppress metal leaching from CuFe2O4, for which 4-CP degradation was retained through small concentrations of Fe and Cu ions in solution. Our results highlight the importance of careful monitoring of metal content in the aqueous phase, certainly with analytical sensitivity below ppm concentrations of the dissolved metals, and also the crucial influence of time-dependent pH variations on the reaction process. Recyclability of catalysts, pH buffering of solutions or monitoring of metal content in the solid phase by less sensitive analytical methods, for example, chemical analysis, gravimetry, X-ray fluorescence, or energy dispersive X-ray analysis in electron microscopes, cannot exclude the homogeneous Fenton route in the presence of solid catalysts

    Identification and Description of the Uncertainty, Variability, Bias and Influence in Quantitative Structure-Activity Relationships (QSARs) for Toxicity Prediction

    Get PDF
    Improving regulatory confidence in, and acceptance of, a prediction of toxicity from a quantitative structure-activity relationship (QSAR) requires assessment of its uncertainty and determination of whether the uncertainty is acceptable. Thus, it is crucial to identify potential uncertainties fundamental to QSAR predictions. Based on expert review, sources of uncertainties, variabilities and biases, as well as areas of influence in QSARs for toxicity prediction were established. These were grouped into three thematic areas: uncertainties, variabilities, potential biases and influences associated with 1) the creation of the QSAR, 2) the description of the QSAR, and 3) the application of the QSAR, also showing barriers for their use. Each thematic area was divided into a total of 13 main areas of concern with 49 assessment criteria covering all aspects of QSAR development, documentation and use. Two case studies were undertaken on different types of QSARs that demonstrated the applicability of the assessment criteria to identify potential weaknesses in the use of a QSAR for a specific purpose such that they may be addressed and mitigation strategies can be proposed, as well as enabling an informed decision on the adequacy of the model in the considered context

    EFSA Panel on Biological Hazards (BIOHAZ) and EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on the minimum hygiene criteria to be applied to clean seawater and on the public health risks and hygiene criteria for bottled seawater intended for domestic use

    Get PDF

    Changes in health complaints after removal of amalgam fillings

    Get PDF
    The aim of the present study was to investigate whether removal of all amalgam fillings was associated with long-term changes in health complaints in a group of patients who attributed subjective health complaints to amalgam fillings. Patients previously examined at the Norwegian Dental Biomaterials Adverse Reaction Unit were included in the study and assigned to a treatment group (n = 20) and a reference group (n = 20). Participants in the treatment group had all amalgam fillings replaced with other restorative materials. Follow-ups took place 3 months, 1 and 3 years after removal of all amalgam fillings. There was no intervention in the reference group. Subjective health complaints were measured by numeric rating scales in both groups. Analysis of covariance was used to compare changes in health complaints over time in the two groups. In the treatment group, there were significant reductions in intra-oral and general health complaints from inclusion into study to the 3-year follow-up. In the reference group, changes in the same period were not significant. Comparisons between the groups showed that reductions in intra-oral and general health complaints in the treatment group were significantly different from the changes in the reference group. The mechanisms behind this remain to be identified. Reduced exposure to dental amalgam, patient-centred treatment and follow-ups, and elimination of worry are factors that may have influenced the results

    Adverse Effects of Methylmercury: Environmental Health Research Implications

    Get PDF
    Background: The scientific discoveries of health risks resulting from methylmercury exposure began in 1865 describing ataxia, dysarthria, constriction of visual fields, impaired hearing, and sensory disturbance as symptoms of fatal methylmercury poisoning. Objective: Our aim was to examine how knowledge and consensus on methylmercury toxicity have developed in order to identify problems of wider concern in research. Data sources and extraction: We tracked key publications that reflected new insights into human methylmercury toxicity. From this evidence, we identified possible caveats of potential significance for environmental health research in general. Synthesis: At first, methylmercury research was impaired by inappropriate attention to narrow case definitions and uncertain chemical speciation. It also ignored the link between ecotoxicity and human toxicity. As a result, serious delays affected the recognition of methylmercury as a cause of serious human poisonings in Minamata, Japan. Developmental neurotoxicity was first reported in 1952, but despite accumulating evidence, the vulnerability of the developing nervous system was not taken into account in risk assessment internationally until approximately 50 years later. Imprecision in exposure assessment and other forms of uncertainty tended to cause an underestimation of methylmercury toxicity and repeatedly led to calls for more research rather than prevention. Conclusions: Coupled with legal and political rigidity that demanded convincing documentation before considering prevention and compensation, types of uncertainty that are common in environmental research delayed the scientific consensus and were used as an excuse for deferring corrective action. Symptoms of methylmercury toxicity, such as tunnel vision, forgetfulness, and lack of coordination, also seemed to affect environmental health research and its interpretation

    Dental amalgam and mercury in dentistry

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.Mercury in dentistry has re-emerged as a contentious issue in public health, predominantly because so many people are inadvertently exposed to mercury in order to obtain the benefits of dental amalgam fillings, and the risks remain difficult to interpret. This commentary aims to examine the issues involved in public policy assessment of the continued use of dental amalgam in dentistry.AJ Spence

    Adverse Effects of Methylmercury: Environmental Health Research Implications

    Get PDF
    Background: The scientific discoveries of health risks resulting from methylmercury exposure began in 1865 describing ataxia, dysarthria, constriction of visual fields, impaired hearing, and sensory disturbance as symptoms of fatal methylmercury poisoning. Objective: Our aim was to examine how knowledge and consensus on methylmercury toxicity have developed in order to identify problems of wider concern in research. Data sources and extraction: We tracked key publications that reflected new insights into human methylmercury toxicity. From this evidence, we identified possible caveats of potential significance for environmental health research in general. Synthesis: At first, methylmercury research was impaired by inappropriate attention to narrow case definitions and uncertain chemical speciation. It also ignored the link between ecotoxicity and human toxicity. As a result, serious delays affected the recognition of methylmercury as a cause of serious human poisonings in Minamata, Japan. Developmental neurotoxicity was first reported in 1952, but despite accumulating evidence, the vulnerability of the developing nervous system was not taken into account in risk assessment internationally until approximately 50 years later. Imprecision in exposure assessment and other forms of uncertainty tended to cause an underestimation of methylmercury toxicity and repeatedly led to calls for more research rather than prevention. Conclusions: Coupled with legal and political rigidity that demanded convincing documentation before considering prevention and compensation, types of uncertainty that are common in environmental research delayed the scientific consensus and were used as an excuse for deferring corrective action. Symptoms of methylmercury toxicity, such as tunnel vision, forgetfulness, and lack of coordination, also seemed to affect environmental health research and its interpretation
    corecore