113 research outputs found

    Global public policy, transnational policy communities, and their networks

    Get PDF
    Public policy has been a prisoner of the word "state." Yet, the state is reconfigured by globalization. Through "global public–private partnerships" and "transnational executive networks," new forms of authority are emerging through global and regional policy processes that coexist alongside nation-state policy processes. Accordingly, this article asks what is "global public policy"? The first part of the article identifies new public spaces where global policies occur. These spaces are multiple in character and variety and will be collectively referred to as the "global agora." The second section adapts the conventional policy cycle heuristic by conceptually stretching it to the global and regional levels to reveal the higher degree of pluralization of actors and multiple-authority structures than is the case at national levels. The third section asks: who is involved in the delivery of global public policy? The focus is on transnational policy communities. The global agora is a public space of policymaking and administration, although it is one where authority is more diffuse, decision making is dispersed and sovereignty muddled. Trapped by methodological nationalism and an intellectual agoraphobia of globalization, public policy scholars have yet to examine fully global policy processes and new managerial modes of transnational public administration

    The salmon louse genome: Copepod features and parasitic adaptations

    Get PDF
    Copepods encompass numerous ecological roles including parasites, detrivores and phytoplankton grazers. Nonetheless, copepod genome assemblies remain scarce. Lepeophtheirus salmonis is an economically and ecologically important ectoparasitic copepod found on salmonid fish. We present the 695.4 Mbp L. salmonis genome assembly containing ≈60% repetitive regions and 13,081 annotated protein-coding genes. The genome comprises 14 autosomes and a ZZ-ZW sex chromosome system. Assembly assessment identified 92.4% of the expected arthropod genes. Transcriptomics supported annotation and indicated a marked shift in gene expression after host attachment, including apparent downregulation of genes related to circadian rhythm coinciding with abandoning diurnal migration. The genome shows evolutionary signatures including loss of genes needed for peroxisome biogenesis, presence of numerous FNII domains, and an incomplete heme homeostasis pathway suggesting heme proteins to be obtained from the host. Despite repeated development of resistance against chemical treatments L. salmonis exhibits low numbers of many genes involved in detoxification.publishedVersio

    Identification of a Blood-Based Protein Biomarker Panel for Lung Cancer Detection

    Get PDF
    Lung cancer is the deadliest cancer worldwide, mainly due to its advanced stage at the time of diagnosis. A non-invasive method for its early detection remains mandatory to improve patients’ survival. Plasma levels of 351 proteins were quantified by Liquid Chromatography-Parallel Reaction Monitoring (LC-PRM)-based mass spectrometry in 128 lung cancer patients and 93 healthy donors. Bootstrap sampling and least absolute shrinkage and selection operator (LASSO) penalization were used to find the best protein combination for outcome prediction. The PanelomiX platform was used to select the optimal biomarker thresholds. The panel was validated in 48 patients and 49 healthy volunteers. A 6-protein panel clearly distinguished lung cancer from healthy individuals. The panel displayed excellent performance: area under the receiver operating characteristic curve (AUC) = 0.999, positive predictive value (PPV) = 0.992, negative predictive value (NPV) = 0.989, specificity = 0.989 and sensitivity = 0.992. The panel detected lung cancer independently of the disease stage. The 6-protein panel and other sub-combinations displayed excellent results in the validation dataset. In conclusion, we identified a blood-based 6-protein panel as a diagnostic tool in lung cancer. Used as a routine test for high- and average-risk individuals, it may complement currently adopted techniques in lung cancer screening.publishedVersio

    Prevalence of Drug-Resistant HIV-1 Variants in Untreated Individuals in Europe: Implications for Clinical Management

    Get PDF
    BackgroundInfection with drug-resistant human immunodeficiency virus type 1 (HIV-1) can impair the response to combination therapy. Widespread transmission of drug-resistant variants has the disturbing potential of limiting future therapy options and affecting the efficacy of postexposure prophylaxis penta increase-spacing 1>MethodsWe determined the baseline rate of drug resistance in 2208 therapy-naive patients recently and chronically infected with HIV-1 from 19 European countries during 1996-2002 ResultsIn Europe, 1 of 10 antiretroviral-naive patients carried viruses with ⩾1 drug-resistance mutation. Recently infected patients harbored resistant variants more often than did chronically infected patients (13.5% vs. 8.7%; P=.006). Non-B viruses (30%) less frequently carried resistance mutations than did subtype B viruses (4.8% vs. 12.9%; P<.01). Baseline resistance increased over time in newly diagnosed cases of non-B infection: from 2.0% (1/49) in 1996-1998 to 8.2% (16/194) in 2000-2001 ConclusionsDrug-resistant variants are frequently present in both recently and chronically infected therapy-naive patients. Drug-resistant variants are most commonly seen in patients infected with subtype B virus, probably because of longer exposure of these viruses to drugs. However, an increase in baseline resistance in non-B viruses is observed. These data argue for testing all drug-naive patients and are of relevance when guidelines for management of postexposure prophylaxis and first-line therapy are update

    The population genomic legacy of the second plague pandemic

    Get PDF
    Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%–40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th–19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.publishedVersio

    The population genomic legacy of the second plague pandemic

    Get PDF
    Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics

    Methylation Defect in Imprinted Genes Detected in Patients with an Albright's Hereditary Osteodystrophy Like Phenotype and Platelet Gs Hypofunction

    Get PDF
    Pseudohypoparathyroidism (PHP) indicates a group of heterogeneous disorders whose common feature is represented by impaired signaling of hormones that activate Gsalpha, encoded by the imprinted GNAS gene. PHP-Ib patients have isolated Parathormone (PTH) resistance and GNAS epigenetic defects while PHP-Ia cases present with hormone resistance and characteristic features jointly termed as Albright's Hereditary Osteodystrophy (AHO) due to maternally inherited GNAS mutations or similar epigenetic defects as found for PHP-Ib. Pseudopseudohypoparathyroidism (PPHP) patients with an AHO phenotype and no hormone resistance and progressive osseous heteroplasia (POH) cases have inactivating paternally inherited GNAS mutations.We here describe 17 subjects with an AHO-like phenotype that could be compatible with having PPHP but none of them carried Gsalpha mutations. Functional platelet studies however showed an obvious Gs hypofunction in the 13 patients that were available for testing. Methylation for the three differentially methylated GNAS regions was quantified via the Sequenom EpiTYPER. Patients showed significant hypermethylation of the XL amplicon compared to controls (36 ± 3 vs. 29 ± 3%; p<0.001); a pattern that is reversed to XL hypomethylation found in PHPIb. Interestingly, XL hypermethylation was associated with reduced XLalphaS protein levels in the patients' platelets. Methylation for NESP and ExonA/B was significantly different for some but not all patients, though most patients have site-specific CpG methylation abnormalities in these amplicons. Since some AHO features are present in other imprinting disorders, the methylation of IGF2, H19, SNURF and GRB10 was quantified. Surprisingly, significant IGF2 hypermethylation (20 ± 10 vs. 14 ± 7%; p<0.05) and SNURF hypomethylation (23 ± 6 vs. 32 6%; p<0.001) was found in patients vs. controls, while H19 and GRB10 methylation was normal.In conclusion, this is the first report of methylation defects including GNAS in patients with an AHO-like phenotype without endocrinological abnormalities. Additional studies are still needed to correlate the methylation defect with the clinical phenotype

    Natalizumab treatment shows low cumulative probabilities of confirmed disability worsening to EDSS milestones in the long-term setting.

    Get PDF
    Abstract Background Though the Expanded Disability Status Scale (EDSS) is commonly used to assess disability level in relapsing-remitting multiple sclerosis (RRMS), the criteria defining disability progression are used for patients with a wide range of baseline levels of disability in relatively short-term trials. As a result, not all EDSS changes carry the same weight in terms of future disability, and treatment benefits such as decreased risk of reaching particular disability milestones may not be reliably captured. The objectives of this analysis are to assess the probability of confirmed disability worsening to specific EDSS milestones (i.e., EDSS scores ≥3.0, ≥4.0, or ≥6.0) at 288 weeks in the Tysabri Observational Program (TOP) and to examine the impact of relapses occurring during natalizumab therapy in TOP patients who had received natalizumab for ≥24 months. Methods TOP is an ongoing, open-label, observational, prospective study of patients with RRMS in clinical practice. Enrolled patients were naive to natalizumab at treatment initiation or had received ≤3 doses at the time of enrollment. Intravenous natalizumab (300 mg) infusions were given every 4 weeks, and the EDSS was assessed at baseline and every 24 weeks during treatment. Results Of the 4161 patients enrolled in TOP with follow-up of at least 24 months, 3253 patients with available baseline EDSS scores had continued natalizumab treatment and 908 had discontinued (5.4% due to a reported lack of efficacy and 16.4% for other reasons) at the 24-month time point. Those who discontinued due to lack of efficacy had higher baseline EDSS scores (median 4.5 vs. 3.5), higher on-treatment relapse rates (0.82 vs. 0.23), and higher cumulative probabilities of EDSS worsening (16% vs. 9%) at 24 months than those completing therapy. Among 24-month completers, after approximately 5.5 years of natalizumab treatment, the cumulative probabilities of confirmed EDSS worsening by 1.0 and 2.0 points were 18.5% and 7.9%, respectively (24-week confirmation), and 13.5% and 5.3%, respectively (48-week confirmation). The risks of 24- and 48-week confirmed EDSS worsening were significantly higher in patients with on-treatment relapses than in those without relapses. An analysis of time to specific EDSS milestones showed that the probabilities of 48-week confirmed transition from EDSS scores of 0.0–2.0 to ≥3.0, 2.0–3.0 to ≥4.0, and 4.0–5.0 to ≥6.0 at week 288 in TOP were 11.1%, 11.8%, and 9.5%, respectively, with lower probabilities observed among patients without on-treatment relapses (8.1%, 8.4%, and 5.7%, respectively). Conclusions In TOP patients with a median (range) baseline EDSS score of 3.5 (0.0–9.5) who completed 24 months of natalizumab treatment, the rate of 48-week confirmed disability worsening events was below 15%; after approximately 5.5 years of natalizumab treatment, 86.5% and 94.7% of patients did not have EDSS score increases of ≥1.0 or ≥2.0 points, respectively. The presence of relapses was associated with higher rates of overall disability worsening. These results were confirmed by assessing transition to EDSS milestones. Lower rates of overall 48-week confirmed EDSS worsening and of transitioning from EDSS score 4.0–5.0 to ≥6.0 in the absence of relapses suggest that relapses remain a significant driver of disability worsening and that on-treatment relapses in natalizumab-treated patients are of prognostic importance
    corecore