21 research outputs found

    On the Gibbs phase rule in the Pirogov-Sinai regime

    Get PDF
    We consider extended Pirogov-Sinai models including lattice and continuum particle systems with Kac potentials. Calling λ an intensive variable conjugate to an extensive quantity α appearing in the Hamiltonian via the additive term -λα, we prove that if a Pirogov-Sinai phase transition with order parameter λ occurs at λ = 0, then this is the only point in an interval of values of λ centered at 0, where phase transitions occur

    Potts models in the continuum. Uniqueness and exponential decay in the restricted ensembles

    Full text link
    In this paper we study a continuum version of the Potts model. Particles are points in R^d, with a spin which may take S possible values, S being at least 3. Particles with different spins repel each other via a Kac pair potential. In mean field, for any inverse temperature there is a value of the chemical potential at which S+1 distinct phases coexist. For each mean field pure phase, we introduce a restricted ensemble which is defined so that the empirical particles densities are close to the mean field values. Then, in the spirit of the Dobrushin Shlosman theory, we get uniqueness and exponential decay of correlations when the range of the interaction is large enough. In a second paper, we will use such a result to implement the Pirogov-Sinai scheme proving coexistence of S+1 extremal DLR measures.Comment: 72 pages, 1 figur

    Coexistence of ordered and disordered phases in Potts models in the continuum

    Full text link
    This is the second of two papers on a continuum version of the Potts model, where particles are points in Rd\mathbb R^d, d2d\ge 2, with a spin which may take S3S\ge 3 possible values. Particles with different spins repel each other via a Kac pair potential of range \ga^{-1}, \ga>0. In this paper we prove phase transition, namely we prove that if the scaling parameter of the Kac potential is suitably small, given any temperature there is a value of the chemical potential such that at the given temperature and chemical potential there exist S+1S+1 mutually distinct DLR measures.Comment: 57 pages, 1 figur

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Phase transition analysis for spin systems with long range interactions

    No full text
    Dottorato di ricerca in matematica. 10. ciclo. Relatore Presutti. Coordinatore CannarsaConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome; Biblioteca Nazionale Centrale - P.za Cavalleggeri, 1, Florence / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Phase Separation for the Long Range One-dimensional Ising Model

    No full text
    Dedicated to the memory of Enza Orlandi.International audienceWe consider the phase separation problem for the one--dimensional ferromagnetic Ising model with long--range two--body interaction, J(n)=n^{-2+\a} where nNn\in \N denotes the distance of the two spins and \alpha \in ]0,\a_+[ with \a_+=(\log 3)/(\log 2) -1. We prove that given m]1,+1[m\in ]-1,+1[, if the temperature is small enough, then typical configuration for the μ+\mu^{+} Gibbs measure conditionally to have a empirical magnetization of the order mm are made of a single interval that occupy almost a proportion \frac{1}{2}(1-\frac{m}{m_\b}) of the volume with the minus phase inside and the rest of the volume is the plus phase, here m_\b>0 is the spontaneous magnetization
    corecore