224 research outputs found

    The trigonal polymorph of strontium tetra­borate, β-SrB4O7

    Get PDF
    The asymmetric unit of the title compound, β-SrB4O7, contains five Sr atoms (three located on a threefold rotation axis), twelve B and 21 O atoms. The structure is made up from BO3 triangles and BO4 tetra­hedra in a 1:1 ratio. Pairs of BO3 triangles are linked to BO4 tetra­hedra via common corners, forming chains. These chains are further linked to adjacent chains through corner-sharing, leading to a three-dimensional framework with channels running parallel to [001]. The Sr2+ ions reside in the channels and exhibit strongly distorted polyhedra The density of the β-polymorph is considerably lower than that of α-SrB4O7, which is constructed solely from BO4 tetra­hedra

    Sustained proliferation in cancer: mechanisms and novel therapeutic targets

    Get PDF
    Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression

    Apc Mutation Enhances PyMT-Induced Mammary Tumorigenesis

    Get PDF
    The Adenomatous Polyposis Coli (APC) tumor suppressor gene is silenced by hypermethylation or mutated in up to 70% of human breast cancers. In mouse models, Apc mutation disrupts normal mammary development and predisposes to mammary tumor formation; however, the cooperation between APC and other mutations in breast tumorigenesis has not been studied. To test the hypothesis that loss of one copy of APC promotes oncogene-mediated mammary tumorigenesis, ApcMin/+ mice were crossed with the mouse mammary tumor virus (MMTV)-Polyoma virus middle T antigen (PyMT) or MMTV-c-Neu transgenic mice. In the PyMT tumor model, the ApcMin/+ mutation significantly decreased survival and tumor latency, promoted a squamous adenocarcinoma phenotype, and enhanced tumor cell proliferation. In tumor-derived cell lines, the proliferative advantage was a result of increased FAK, Src and JNK signaling. These effects were specific to the PyMT model, as no changes were observed in MMTV-c-Neu mice carrying the ApcMin/+ mutation. Our data indicate that heterozygosity of Apc enhances tumor development in an oncogene-specific manner, providing evidence that APC-dependent pathways may be valuable therapeutic targets in breast cancer. Moreover, these preclinical model systems offer a platform for dissection of the molecular mechanisms by which APC mutation enhances breast carcinogenesis, such as altered FAK/Src/JNK signaling
    corecore