26 research outputs found

    Metabolism within the tumor microenvironment and its implication on cancer progression: an ongoing therapeutic target

    Get PDF
    Since reprogramming energy metabolism is considered a new hallmark of cancer, tumor metabolism is again in the spotlight of cancer research. Many studies have been carried out and many possible therapies have been developed in the last years. However, tumor cells are not alone. A series of extracellular components and stromal cells, such as endothelial cells, cancer-associated fibroblasts, tumor-associated macrophages and tumor-infiltrating T cells, surround tumor cells in the so-called tumor microenvironment. Metabolic features of these cells are being studied in deep in order to find relationships between metabolism within the tumor microenvironment and tumor progression. Moreover, it cannot be forgotten that tumor growth is able to modulate host metabolism and homeostasis, so that tumor microenvironment is not the whole story. Importantly, the metabolic switch in cancer is just a consequence of the flexibility and adaptability of metabolism and should not be surprising. Treatments of cancer patients with combined therapies including anti-tumor agents with those targeting stromal cell metabolism, anti-angiogenic drugs and/or immunotherapy are being developed as promising therapeutics.Mª Carmen Ocaña is recipient of a predoctoral FPU grant from the Spanish Ministry of Education, Culture and Sport. Supported by grants BIO2014-56092-R (MINECO and FEDER), P12-CTS-1507 (Andalusian Government and FEDER) and funds from group BIO-267 (Andalusian Government). The "CIBER de Enfermedades Raras" is an initiative from the ISCIII (Spain). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript

    Caveolin contributes to the modulation of basal and β-adrenoceptor stimulated function of the adult rat ventricular myocyte by simvastatin: A novel pleiotropic effect

    Get PDF
    The number of people taking statins is increasing across the globe, highlighting the Importance of fully understanding statins effects on the cardiovascular system. The beneficial impact of statins extends well beyond regression of atherosclerosis to include direct effects on tissues of the cardiovascular system (pleiotropic effects). Pleiotropic effects on the cardiac myocyte are often overlooked. Here we consider the contribution of the caveolin protein, whose expression and cellular distribution is dependent on cholesterol, to statin effects on the cardiac myocyte. Caveolin is a structural and regulatory component of caveolae, and is a key regulator of cardiac contractile function and adrenergic responsiveness. We employed an experimental model in which inhibition of myocyte HMG CoA reductase could be studied in the absence of paracrine influences from non-myocyte cells. Adult rat ventricular myocytes were treated with 10 μM simvastatin for 2 days. Simvastatin treatment reduced myocyte cholesterol, caveolin 3 and caveolar density. Negative inotropic and positive lusitropic effects (with corresponding changes in [Ca2]¡) were seen in statin-treated cells. Simvastatin significantly potentiated the inotropic response to β2-, but not β1-, adrenoceptor stimulation. Under conditions of β2-adrenoceptor stimulation, phosphorylation of phospholamban at Ser16and troponin I at Ser23/24was enhanced with statin treatment. Simvastatin increased NO production without significant effects on eNOS expression or phosphorylation (Ser1177), consistent with the reduced expression of caveolin 3, its constitutive Inhibitor. In conclusion, statin treatment can reduce caveolin 3 expression, with functional consequences consistent with the known role of caveolae in the cardiac cell. These data are likely to be of significance, particularly during the early phases of statin treatment, and in patients with heart failure who have altered ß-adrenoceptor signalling. In addition, as caveolin is ubiquitously expressed and has myriad tissue-specific functions, the impact of statin-dependent changes in caveolin is likely to have many other functional sequelae

    Activation of EGFR/ERBB2 via Pathways Involving ERK1/2, P38 MAPK, AKT and FOXO Enhances Recovery of Diabetic Hearts from Ischemia-Reperfusion Injury

    Get PDF
    This study characterized the effects of diabetes and/or ischemia on epidermal growth factor receptor, EGFR, and/or erbB2 signaling pathways on cardiac function. Isolated heart perfusion model of global ischemia was used to study the effect of chronic inhibition or acute activation of EGFR/erbB2 signaling on cardiac function in a rat model of type-1 diabetes. Induction of diabetes with streptozotocin impaired recovery of cardiac function (cardiac contractility and hemodynamics) following 40 minutes of global ischemia in isolated hearts. Chronic treatment with AG825 or AG1478, selective inhibitors of erbB2 and EGFR respectively, did not affect hyperglycemia but led to an exacerbation whereas acute administration of the EGFR ligand, epidermal growth factor (EGF), led to an improvement in cardiac recovery in diabetic hearts. Diabetes led to attenuated dimerization and phosphorylation of cardiac erbB2 and EGFR receptors that was associated with reduced signaling via extracellular-signal-regulated kinase 1/2 (ERK1/2), p38 mitogen activated protein (MAP) kinase and AKT (protein kinase B). Ischemia was also associated with reduced cardiac signaling via these molecules whereas EGF-treatment opposed diabetes and/or ischemia induced changes in ERK1/2, p38 MAP kinase, and AKT-FOXO signaling. Losartan treatment improved cardiac function in diabetes but also impaired EGFR phosphorylation in diabetic heart. Co-administration of EGF rescued Losartan-mediated reduction in EGFR phosphorylation and significantly improved cardiac recovery more than with either agent alone. EGFR/erbB2 signaling is an important cardiac survival pathway whose activation, particularly in diabetes, ischemia or following treatment with drugs that inhibit this cascade, significantly improves cardiac function. These findings may have clinical relevance particularly in the treatment of diabetes-induced cardiac dysfunction

    Differential Effects of Pravastatin and Simvastatin on the Growth of Tumor Cells from Different Organ Sites

    Get PDF
    3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) inhibitors, commonly known as statins, may possess cancer preventive and therapeutic properties. Statins are effective suppressors of cholesterol synthesis with a well-established risk-benefit ratio in cardiovascular disease prevention. Mechanistically, targeting HMGCR activity primarily influences cholesterol biosynthesis and prenylation of signaling proteins. Pravastatin is a hydrophilic statin that is selectively taken up by a sodium-independent organic anion transporter protein-1B1 (OATP1B1) exclusively expressed in liver. Simvastatin is a hydrophobic statin that enters cells by other mechanisms. Poorly-differentiated and well-differentiated cancer cell lines were selected from various tissues and examined for their response to these two statins. Simvastatin inhibited the growth of most tumor cell lines more effectively than pravastatin in a dose dependent manner. Poorly-differentiated cancer cells were generally more responsive to simvastatin than well-differentiated cancer cells, and the levels of HMGCR expression did not consistently correlate with response to statin treatment. Pravastatin had a significant effect on normal hepatocytes due to facilitated uptake and a lesser effect on prostate PC3 and colon Caco-2 cancer cells since the OATP1B1 mRNA and protein were only found in the normal liver and hepatocytes. The inhibition of cell growth was accompanied by distinct alterations in mitochondrial networks and dramatic changes in cellular morphology related to cofilin regulation and loss of p-caveolin. Both statins, hydrophilic pravastatin and hypdrophobic simvastatin caused redistribution of OATP1B1 and HMGCR to perinuclear sites. In conclusion, the specific chemical properties of different classes of statins dictate mechanistic properties which may be relevant when evaluating biological responses to statins

    Increased Expression of Fatty-Acid and Calcium Metabolism Genes in Failing Human Heart

    Get PDF
    Heart failure (HF) involves alterations in metabolism, but little is known about cardiomyopathy-(CM)-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA) uptake and oxidation or in calcium-(Ca(2+))-handling in the human heart.RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36) without diabetes mellitus of ischaemic (ICM, n = 16) or dilated (DCM, n = 20) cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6).Significant increases in mRNA of genes regulating FA uptake (CD36) and intracellular transport (Heart-FA-Binding Protein (HFABP)) were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA), PPAR-gamma coactivator-1-alpha (PGC1A) and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca(2+)-handling genes (Two-Pore-Channel 1 (TPCN1), Two-Pore-Channel 2 (TPCN2), and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1)) increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca(2+)-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL): three were common to and three distinct from ICM.DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca(2+)-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca(2+)-handling genes

    Molecular Mechanisms of Cardiovascular Damage Induced by Anti-HER-2 Therapies

    No full text
    In the last two decades, newer biological drugs have been designed in order to \u201ctarget\u201d specific proteins involved in cancer proliferation and overcome the increased risk of cardiovascular toxicity associated with \u201cbroad-spectrum\u201d classic chemotherapeutics. Unfortunately, these proteins are also important for the maintenance of cardiovascular homeostasis. The humanized anti-ErbB2 antibody, trastuzumab, is the prototypical biological drug first introduced in antineoplastic protocols for the treatment of ErbB2+ breast cancer. Indeed, not only is this protein overexpressed in several breast cancers, but also it plays a major role in the cardiovascular system in cell growth, including myocyte growth, and inhibition of apoptosis and can modulate the oxidative damage induced by anthracyclines. Hence, patients treated with trastuzumab developed systolic dysfunction, especially when administered with or shortly after doxorubicin
    corecore