383 research outputs found

    Alternative antibody for the detection of CA125 antigen: a European multicenter study for the evaluation of the analytical and clinical performance of the Access (R) OV Monitor assay on the UniCel (R) Dxl 800 Immunoassay System

    Get PDF
    Background: Cancer antigen CA125 is known as a valuable marker for the management of ovarian cancer. Methods: The analytical and clinical performance of the Access OV Monitor Immunoassay System (Beckman Coulter) was evaluated at five different European sites and compared with a reference system, defined as CA125 on the Elecsys System (Roche Diagnostics). Results: Total imprecision (%CV) of the OV Monitor ranged between 3.1% and 8.8%, and inter-laboratory reproducibility between 4.7% and 5.0%. Linearity upon dilution showed a mean recovery of 100% (SD+8.1%). Endogenous interferents had no influence on OV Monitor levels (mean recoveries: hemoglobin 107%, bilirubin 103%, triglycericles 103%). There was no high-dose hook effect up to 27,193 kU/L. Clinical performance investigated in sera from 1811 individuals showed a good correlation between the Access OV Monitor and Elecsys CA125 (R = 0.982, slope = 0.921, intercept = + 1.951). OV Monitor serum levels were low in healthy individuals (n = 267, median = 9.7 kU/L, 95th percentile = 30.8 kU/L), higher in individuals with various benign diseases (n = 549, medians = 10.9-16.4 kU/L, 95th percentiles = 44.2-355 kU/L) and even higher in individuals suffering from various cancers (n = 995, medians= 12.4-445 kU/L; 95th percentiles = 53.4-4664 kU/L). Optimal diagnostic accuracy for cancer detection against the relevant benign control group by the OV Monitor was found for ovarian cancer {[}area under the curve (AUC) 0.898]. Results for the reference CA125 assay were comparable (AUC 0.899). Conclusions: The Access OV Monitor provides very good methodological characteristics and demonstrates an excellent analytical and clinical correlation with Elecsys CA125. The best diagnostic accuracy for the OV Monitor was found in ovarian cancer. Our results also suggest a clinical value of the OV Monitor in other cancers

    The Added Value of Circulating Tumor Cell Enumeration to Standard Markers in Assessing Prognosis in a Metastatic Castration-Resistant Prostate Cancer Population.

    Full text link
    Purpose: Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease for which better prognostic models for survival are needed. We examined the added value of circulating tumor cell (CTC) enumeration relative to common prognostic laboratory measures from patients with CRPC. Methods: Utility of CTC enumeration as a baseline and postbaseline prognostic biomarker was examined using data from two prospective randomized registration-directed trials (COU-AA-301 and ELM-PC4) within statistical models used to estimate risk for survival. Discrimination and calibration were used to measure model predictive accuracy and the added value for CTC enumeration in the context of a Cox model containing albumin, lactate dehydrogenase (LDH), PSA, hemoglobin, and alkaline phosphatase (ALK). Discrimination quantifies how accurately a risk model predicts short-term versus long-term survivors. Calibration measures the closeness of actual survival time to the predicted survival time. Results: Adding CTC enumeration to a model containing albumin, LDH, PSA, hemoglobin, and ALK ("ALPHA") improved its discriminatory power. The weighted c-index for ALPHA without CTCs was 0.72 (SE, 0.02) versus 0.75 (SE, 0.02) for ALPHA + CTCs. The increase in discrimination was restricted to the lower-risk cohort. In terms of calibration, adding CTCs produced a more accurate model-based prediction of patient survival. The absolute prediction error for ALPHA was 3.95 months (SE, 0.28) versus 3.75 months (SE, 0.22) for ALPHA + CTCs. Conclusions: Addition of CTC enumeration to standard measures provides more accurate assessment of patient risk in terms of baseline and postbaseline prognosis in the mCRPC population. Clin Cancer Res; 23(8); 1967-73. ©2016 AACR

    INSPIRE (INvestigating Social and PractIcal suppoRts at the End of life): Pilot randomised trial of a community social and practical support intervention for adults with life-limiting illness

    Get PDF
    YesBACKGROUND: For most people, home is the preferred place of care and death. Despite the development of specialist palliative care and primary care models of community based service delivery, people who are dying, and their families/carers, can experience isolation, feel excluded from social circles and distanced from their communities. Loneliness and social isolation can have a detrimental impact on both health and quality of life. Internationally, models of social and practical support at the end of life are gaining momentum as a result of the Compassionate Communities movement. These models have not yet been subjected to rigorous evaluation. The aims of the study described in this protocol are: (1) to evaluate the feasibility, acceptability and potential effectiveness of The Good Neighbour Partnership (GNP), a new volunteer-led model of social and practical care/support for community dwelling adults in Ireland who are living with advanced life-limiting illness; and (2) to pilot the method for a Phase III Randomised Controlled Trial (RCT). DESIGN: The INSPIRE study will be conducted within the Medical Research Council (MRC) Framework for the Evaluation of Complex Interventions (Phases 0-2) and includes an exploratory two-arm delayed intervention randomised controlled trial. Eighty patients and/or their carers will be randomly allocated to one of two groups: (I) Intervention: GNP in addition to standard care or (II) Control: Standard Care. Recipients of the GNP will be asked for their views on participating in both the study and the intervention. Quantitative and qualitative data will be gathered from both groups over eight weeks through face-to-face interviews which will be conducted before, during and after the intervention. The primary outcome is the effect of the intervention on social and practical need. Secondary outcomes are quality of life, loneliness, social support, social capital, unscheduled health service utilisation, caregiver burden, adverse impacts, and satisfaction with intervention. Volunteers engaged in the GNP will also be assessed in terms of their death anxiety, death self efficacy, self-reported knowledge and confidence with eleven skills considered necessary to be effective GNP volunteers. DISCUSSION: The INSPIRE study addresses an important knowledge gap, providing evidence on the efficacy, utility and acceptability of a unique model of social and practical support for people living at home, with advanced life-limiting illness. The findings will be important in informing the development (and evaluation) of similar service models and policy elsewhere both nationally and internationally. TRIAL REGISTRATION: ISRCTN18400594 18(th) February 2015

    Causes of Morbidity in Wild Raptor Populations Admitted at a Wildlife Rehabilitation Centre in Spain from 1995-2007: A Long Term Retrospective Study

    Get PDF
    Background: Morbidity studies complement the understanding of hazards to raptors by identifying natural or anthropogenic factors. Descriptive epidemiological studies of wildlife have become an important source of information about hazards to wildlife populations. On the other hand, data referenced to the overall wild population could provide a more accurate assessment of the potential impact of the morbidity/mortality causes in populations of wild birds. Methodology/Principal Findings: The present study described the morbidity causes of hospitalized wild raptors and their incidence in the wild populations, through a long term retrospective study conducted at a wildlife rehabilitation centre of Catalonia (1995-2007). Importantly, Seasonal Cumulative Incidences (SCI) were calculated considering estimations of the wild population in the region and trend analyses were applied among the different years. A total of 7021 birds were analysed: 7 species of Strigiformes (n = 3521) and 23 of Falconiformes (n = 3500). The main causes of morbidity were trauma (49.5%), mostly in the Falconiformes, and orphaned/young birds (32.2%) mainly in the Strigiformes. During wintering periods, the largest morbidity incidence was observed in Accipiter gentillis due to gunshot wounds and in Tyto alba due to vehicle trauma. Within the breeding season, Falco tinnunculus (orphaned/young category) and Bubo bubo (electrocution and metabolic disorders) represented the most affected species. Cases due to orphaned/young, infectious/parasitic diseases, electrocution and unknown trauma tended to increase among years. By contrast, cases by undetermined cause, vehicle trauma and captivity decreased throughout the study period. Interestingly, gunshot injuries remained constant during the study period. Conclusions/Significance: Frequencies of morbidity causes calculated as the proportion of each cause referred to the total number of admitted cases, allowed a qualitative assessment of hazards for the studied populations. However, cumulative incidences based on estimated wild raptor population provided a more accurate approach to the potential ecological impact of the morbidity causes in the wild populations

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Evolution of Highly Polymorphic T Cell Populations in Siblings with the Wiskott-Aldrich Syndrome

    Get PDF
    Population level evolutionary processes can occur within a single organism when the germ line contains a mutation that confers a cost at the level of the cell. Here we describe how multiple compensatory mutations arose through a within-individual evolutionary process in two brothers with the immune deficiency Wiskott-Aldrich Syndrome (WAS). As a result, both brothers have T lymphocyte populations that are highly polymorphic at the locus of the germ line defect, and no single allele achieves fixation. WASP, the gene product affected in this disease, is specific to white blood cells where it is responsible for regulating actin cytoskeleton dynamics in a wide range of cellular responses. The brothers inherited a rare allele predicted to result in truncated WASP lacking the carboxy-terminal VCA domains, the region that directly catalyzes actin filament generation. Although the brothers' T cell populations are highly polymorphic, all share a corrective effect relative to the inherited allele in that they restore the VCA domain. This indicates massive selection against the truncated germ line allele. No single somatic allele becomes fixed in the circulating T cell population of either brother, indicating that a regulated step in maturation of the affected cell lineage is severely compromised by the germ line allele. Based on the finding of multiple somatic mutations, the known maturation pathway for T-lineage cells and the known defects of T cells and precursor thymocytes in mice with truncated WASP, we hypothesize that the presence of truncated WASP (WASPΔVCA) confers an extreme disadvantage in early developing thymocytes, above and beyond the known cost of absence of full-length WASP, and that the disadvantage likely occurs through dominant negative competition of WASPΔVCA with N-WASP, a protein that otherwise partially compensates for WASP absence in developing thymocytes

    Angiotensin II Facilitates Breast Cancer Cell Migration and Metastasis

    Get PDF
    Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN) were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors
    corecore