114 research outputs found

    Polyphenols and non-alcoholic fatty liver disease: impact and mechanisms:impact and mechanisms

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is considered to be the hepatic component of the metabolic syndrome and its prevalence is rapidly increasing due to its strong association with insulin resistance and obesity. At present, given that NAFLD is highly prevalent and therapies are limited, much attention is focused on identifying effective dietary strategies for the prevention and treatment of the disease. Polyphenols are a group of plant bioactive compounds whose regular consumption have been associated with a reduction in the risk of a number of metabolic disorders associated with NAFLD. Here we review the emerging and relatively consistent evidence from cell culture and rodent studies showing that select polyphenols positively modulate a variety of contributors to the NAFLD phenotype, through diverse and complementary mechanisms of action. In particular, the reduction of de novo lipogenesis (via sterol regulatory element-binding protein 1c) and increased fatty acid β-oxidation, presumably involving AMP-activated protein kinase activation, will be discussed. The indirect antioxidant and anti-inflammatory properties of polyphenols which have been reported to contribute to the amelioration of NAFLD will also be addressed. In addition to a direct study of the liver, rodent studies have provided insight into the impact of polyphenols on adipose tissue function and whole body insulin sensitivity, which are likely to in part modulate their impact on NAFLD development. Finally an overview of the limited data from clinical trials will be given along with a discussion of the dose extrapolation from animal studies to human subjects

    Estimation of the iron bioavailability in green vegetables using an in vitro digestion/Caco-2 cell model

    Get PDF
    It is estimated that over 30% of the global population is anaemic, half of which is due to iron deficiency. The bioavailability of iron from vegetables is low and variable, and influenced by food composition and matrix. We have therefore determined the relative bioavailability of iron in five types of green vegetable, spinach, broccoli, savoy cabbage, curly kale and green pepper, by measuring the ferritin response in a simulated digestion/Caco-2 cell model. Savoy cabbage gave the highest ferritin response and analysis of the digest showed that the iron was present in low molecular weight fractions which contained glucose, fructose, organic acids and amino acids. The addition of fructose 1,6-biphosphate to the Caco-2 cells increased iron uptake 2-fold. These results demonstrate that cabbage was the best source of bioavailable iron out of the vegetables studied and suggest that the formation of complexes with fructose derivatives contribute to increase the iron bioavailability

    Assessment of iron bioavailability from different bread making processes using an in vitro intestinal cell model

    Get PDF
    Myo-inositol hexakisphosphate (IP6), is the main iron chelator in cereals and bread. The aim of this study was to investigate the effect of three commercial baking processes (sourdough, conventional yeast and Chorleywood Bread Making Process (CBP)) on the IP6 content of wholemeal bread, its impact on iron uptake in Caco-2 cells and the predicted bioavailability of iron from these breads with added iron, simulating a mixed-meal. The sourdough process fully degraded IP6 whilst the CBP and conventional processes reduced it by 75% compared with wholemeal flour. The iron released in solution after a simulated digestion was 8-fold higher in sourdough bread than with others but no difference in cellular iron uptake was observed. Additionally, when iron was added to the different breads digestions only sourdough bread elicited a significant ferritin response in Caco-2 cells (4.8-fold compared to the other breads) suggesting that sourdough bread could contribute towards improved iron nutrition

    Functional Specialization of the Plant miR396 Regulatory Network through Distinct MicroRNA–Target Interactions

    Get PDF
    MicroRNAs (miRNAs) are ∼21 nt small RNAs that regulate gene expression in animals and plants. They can be grouped into families comprising different genes encoding similar or identical mature miRNAs. Several miRNA families are deeply conserved in plant lineages and regulate key aspects of plant development, hormone signaling, and stress response. The ancient miRNA miR396 regulates conserved targets belonging to the GROWTH-REGULATING FACTOR (GRF) family of transcription factors, which are known to control cell proliferation in Arabidopsis leaves. In this work, we characterized the regulation of an additional target for miR396, the transcription factor bHLH74, that is necessary for Arabidopsis normal development. bHLH74 homologs with a miR396 target site could only be detected in the sister families Brassicaceae and Cleomaceae. Still, bHLH74 repression by miR396 is required for margin and vein pattern formation of Arabidopsis leaves. MiR396 contributes to the spatio-temporal regulation of GRF and bHLH74 expression during leaf development. Furthermore, a survey of miR396 sequences in different species showed variations in the 5′ portion of the miRNA, a region known to be important for miRNA activity. Analysis of different miR396 variants in Arabidopsis thaliana revealed that they have an enhanced activity toward GRF transcription factors. The interaction between the GRF target site and miR396 has a bulge between positions 7 and 8 of the miRNA. Our data indicate that such bulge modulates the strength of the miR396-mediated repression and that this modulation is essential to shape the precise spatio-temporal pattern of GRF2 expression. The results show that ancient miRNAs can regulate conserved targets with varied efficiency in different species, and we further propose that they could acquire new targets whose control might also be biologically relevant

    Silicon particles as trojan horses for potential cancer therapy

    Get PDF
    [EN] Background: Porous silicon particles (PSiPs) have been used extensively as drug delivery systems, loaded with chemical species for disease treatment. It is well known from silicon producers that silicon is characterized by a low reduction potential, which in the case of PSiPs promotes explosive oxidation reactions with energy yields exceeding that of trinitrotoluene (TNT). The functionalization of the silica layer with sugars prevents its solubilization, while further functionalization with an appropriate antibody enables increased bioaccumulation inside selected cells. Results: We present here an immunotherapy approach for potential cancer treatment. Our platform comprises the use of engineered silicon particles conjugated with a selective antibody. The conceptual advantage of our system is that after reaction, the particles are degraded into soluble and excretable biocomponents. Conclusions: In our study, we demonstrate in particular, specific targeting and destruction of cancer cells in vitro. The fact that the LD50 value of PSiPs-HER-2 for tumor cells was 15-fold lower than the LD50 value for control cells demonstrates very high in vitro specificity. This is the first important step on a long road towards the design and development of novel chemotherapeutic agents against cancer in general, and breast cancer in particular.The authors acknowledge financial support from the following projects FIS2009-07812, MAT2012-35040, PROMETEO/2010/043, CTQ2011-23167, CrossSERS, FP7 MC-IEF 329131, and HSFP (project RGP0052/2012) and Medcom Tech SA. Xiang Yu acknowledges support by the Chinese government (CSC, Nr. 2010691036).Fenollosa Esteve, R.; Garcia-Rico, E.; Alvarez, S.; Alvarez, R.; Yu, X.; Rodriguez, I.; Carregal-Romero, S.... (2014). Silicon particles as trojan horses for potential cancer therapy. Journal of Nanobiotechnology. 12:1-10. https://doi.org/10.1186/s12951-014-0035-7S11012Prasad PN: Introduction to Nanomedicine and Nanobioengineering. Wiley, New York, 2012.Randall CL, Leong TG, Bassik N, Gracias DH: 3D lithographically fabricated nanoliter containers for drug delivery. Adv Drug Del Rev. 2007, 59: 1547-1561. 10.1016/j.addr.2007.08.024.Reibetanz U, Chen MHA, Mutukumaraswamy S, Liaw ZY, Oh BHL, Venkatraman S, Donath E, Neu BR: Colloidal DNA carriers for direct localization in cell compartments by pH sensoring. Biogeosciences. 2010, 11: 1779-1784.Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM-C, Decuzzi P, Tour JM, Robertson F, Ferrari M: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nano. 2008, 3: 151-157. 10.1038/nnano.2008.34.Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ: Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009, 8: 331-336. 10.1038/nmat2398.Hong C, Lee J, Son M, Hong SS, Lee C: In-vivo cancer cell destruction using porous silicon nanoparticles. Anti-Cancer Drugs. 2011, 22: 971-977. 910.1097/CAD.1090b1013e32834b32859cCanham LT: Device Comprising Resorbable Silicon for Boron Capture Neutron Therapy. UK Patent Nr. 0302283.7. Book Device Comprising Resorbable Silicon for Boron Capture Neutron Therapy. UK Patent Nr. 0302283.7 (Editor ed.^eds.). 2003, UK Patent Nr. 0302283.7, CityXiao L, Gu L, Howell SB, Sailor MJ: Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano. 2011, 5: 3651-3659. 10.1021/nn1035262.Gil PR, Parak WJ: Composite nanoparticles take Aim at cancer. ACS Nano. 2008, 2: 2200-2205. 10.1021/nn800716j.Gomella LG: Is interstitial hyperthermia a safe and efficacious adjunct to radiotherapy for localized prostate cancer?. Nat Clin Pract Urol. 2004, 1: 72-73. 10.1038/ncpuro0041.Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol. 2011, 103: 317-324. 10.1007/s11060-010-0389-0.Lal S, Clare SE, Halas NJ: Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc Chem Res. 2008, 41: 1842-1851. 10.1021/ar800150g.Lee C, Kim H, Hong C, Kim M, Hong SS, Lee DH, Lee WI: Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation. J Mater Chem. 2008, 18: 4790-4795. 10.1039/b808500e.Osminkina LA, Gongalsky MB, Motuzuk AV, Timoshenko VY, Kudryavtsev AA: Silicon nanocrystals as photo- and sono-sensitizers for biomedical applications. Appl Phys B. 2011, 105: 665-668. 10.1007/s00340-011-4562-8.Jain PK, Huang X, El-Sayed IH, El-Sayed MA: Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008, 41: 1578-1586. 10.1021/ar7002804.Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M: Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta. 1810, 2011: 317-329.Xu R, Huang Y, Mai J, Zhang G, Guo X, Xia X, Koay EJ, Qin G, Erm DR, Li Q, Liu X, Ferrari M, Shen H: Multistage vectored siRNA targeting ataxia-telangiectasia mutated for breast cancer therapy. Small. 2013, 9: 1799-1808. 10.1002/smll.201201510.Park JS, Kinsella JM, Jandial DD, Howell SB, Sailor MJ: Cisplatin-loaded porous Si microparticles capped by electroless deposition of platinum. Small. 2011, 7: 2061-2069. 10.1002/smll.201100438.Xue M, Zhong X, Shaposhnik Z, Qu Y, Tamanoi F, Duan X, Zink JI: pH-operated mechanized porous silicon nanoparticles. J Am Chem Soc. 2011, 133: 8798-8801. 10.1021/ja201252e.Canham LT: Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater. 1995, 7: 1033-1037. 10.1002/adma.19950071215.Popplewell JF, King SJ, Day JP, Ackrill P, Fifield LK, Cresswell RG, Di Tada ML, Liu K: Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry. J Inorganic Biochem. 1998, 69: 177-180. 10.1016/S0162-0134(97)10016-2.Shabir Q, Pokale A, Loni A, Johnson DR, Canham LT, Fenollosa R, Tymczenko M, Rodr guez I, Meseguer F, Cros A, Cantarero A: Medically biodegradable hydrogenated amorphous silicon microspheres. Silicon. 2011, 3: 173-176. 10.1007/s12633-011-9097-4.Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z: Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int J Nanomed. 2011, 6: 2321-2326.Mackowiak SA, Schmidt A, Weiss V, Argyo C, von Schirnding C, Bein T, Bräuchle C: Targeted drug delivery in cancer cells with Red-light photoactivated mesoporous silica nanoparticles. Nano Lett. 2013, 13: 2576-2583. 10.1021/nl400681f.Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI: Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012, 41: 2590-2605. 10.1039/c1cs15246g.O Mara WC, Herring B, Hunt P: Handbook of Semiconductor Silicon Technology. Noyes Publication, New Jersey, 1990.Mikulec FV, Kirtland JD, Sailor MJ: Explosive nanocrystalline porous silicon and its Use in atomic emission spectroscopy. Adv Mater. 2002, 14: 38-41. 10.1002/1521-4095(20020104)14:13.0.CO;2-Z.Clement D, Diener J, Gross E, Kunzner N, Timoshenko VY, Kovalev D: Highly explosive nanosilicon-based composite materials. Phys Stat Sol A. 2005, 202: 1357-1359. 10.1002/pssa.200461102.Canham LT: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett. 1990, 57: 1046-1049. 10.1063/1.103561.Canham LT: Properties of Porous Silicon. INSPEC, United Kindom, 1997.Heinrich JL, Curtis CL, Credo GM, Sailor MJ, Kavanagh KL: Luminescent colloidal silicon suspensions from porous silicon. Science. 1992, 255: 66-68. 10.1126/science.255.5040.66.Littau KA, Szajowski PJ, Muller AJ, Kortan AR, Brus LE: A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J Phys Chem. 1993, 97: 1224-1230. 10.1021/j100108a019.Menz WJ, Shekar S, Brownbridge GPE, Mosbach S, Kōrmer R, Peukert W, Kraft M: Synthesis of silicon nanoparticles with a narrow size distribution: a theoretical study. J Aerosol Sci. 2012, 44: 46-61. 10.1016/j.jaerosci.2011.10.005.Swihart MT, Girshick SL: Thermochemistry and kinetics of silicon hydride cluster formation during thermal decomposition of silane. J Phys Chem B. 1998, 103: 64-76. 10.1021/jp983358e.Fenollosa R, Ramiro-Manzano F, Tymczenko M, Meseguer F: Porous silicon microspheres: synthesis, characterization and application to photonic microcavities. J Mater Chem. 2010, 20: 5210-5214. 10.1039/c0jm00079e.Ramiro-Manzano F, Fenollosa R, Xifré-Pérez E, Garín M, Meseguer F: Porous silicon microcavities based photonic barcodes. Adv Mater. 2011, 23: 3022-3025. 10.1002/adma.201100986.Kastl L, Sasse D, Wulf V, Hartmann R, Mircheski J, Ranke C, Carregal-Romero S, Martínez-López JA, Fernández-Chacón R, Parak WJ, Elsasser HP, Rivera-Gil P: Multiple internalization pathways of polyelectrolyte multilayer capsules into mammalian cells. ACS Nano. 2013, 7: 6605-6618. 10.1021/nn306032k.Schweiger C, Hartmann R, Zhang F, Parak W, Kissel T, Rivera_Gil P: Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotech. 2012, 10: 28-10.1186/1477-3155-10-28.Sanles-Sobrido M, Exner W, Rodr guez-Lorenzo L, Rodríguez-Gonzílez B, Correa-Duarte MA, Álvarez-Puebla RA, Liz-Marzán LM: Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. J Am Chem Soc. 2009, 131: 2699-2705. 10.1021/ja8088444.Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M, Pinter T, Valero V, Liu MC, Sauter G, von Minckwitz G, Visco F, Bee V, Buyse M, Bendahmane B, Tabah-Fisch I, Lindsay MA, Riva A, Crown J: Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011, 365: 1273-1283. 10.1056/NEJMoa0910383.Agus DB, Gordon MS, Taylor C, Natale RB, Karlan B, Mendelson DS, Press MF, Allison DE, Sliwkowski MX, Lieberman G, Kelsey SM, Fyfe G: Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol. 2005, 23: 2534-2543. 10.1200/JCO.2005.03.184.Colombo M, Mazzucchelli S, Montenegro JM, Galbiati E, Corsi F, Parak WJ, Prosperi D: Protein oriented ligation on nanoparticles exploiting O6-alkylguanine-DNA transferase (SNAP) genetically encoded fusion. Small. 2012, 8: 1492-1497. 10.1002/smll.201102284.Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX: Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004, 5: 317-328. 10.1016/S1535-6108(04)00083-2.Paris L, Cecchetti S, Spadaro F, Abalsamo L, Lugini L, Pisanu ME, Lorio E, Natali PG, Ramoni C, Podo F: Inhibition of phosphatidylcholine-specific phospholipase C downregulates HER2 overexpression on plasma membrane of breast cancer cells. Breast Cancer Res. 2010, 12: R27-10.1186/bcr2575.Fenollosa R, Meseguer F, Tymczenko M: Silicon colloids: from microcavities to photonic sponges. Adv Mater. 2008, 20: 95-98. 10.1002/adma.200701589.Jasinski JM, Gates SM: Silicon chemical vapor deposition one step at a time: fundamental studies of silicon hydride chemistry. Acc Chem Res. 1991, 24: 9-15. 10.1021/ar00001a002.Xiao Q, Liu Y, Qiu Y, Zhou G, Mao C, Li Z, Yao Z-J, Jiang S: Potent antitumor mimetics of annonaceous acetogenins embedded with an aromatic moiety in the left hydrocarbon chain part. J Med Chem. 2010, 54: 525-533. 10.1021/jm101053k.Allman SA, Jensen HH, Vijayakrishnan B, Garnett JA, Leon E, Liu Y, Anthony DC, Sibson NR, Feizi T, Matthews S, Davis BG: Potent fluoro-oligosaccharide probes of adhesion in toxoplasmosis. ChemBioChem. 2009, 10: 2522-2529. 10.1002/cbic.200900425.Chambers DJ, Evans GR, Fairbanks AJ: Elimination reactions of glycosyl selenoxides. Tetrahedron. 2004, 60: 8411-8419. 10.1016/j.tet.2004.07.005.Tomabechi Y, Suzuki R, Haneda K, Inazu T: Chemo-enzymatic synthesis of glycosylated insulin using a GlcNAc tag. Bioorg Med Chem. 2010, 18: 1259-1264. 10.1016/j.bmc.2009.12.031.Pastoriza-Santos I, Gomez D, Perez-Juste J, Liz-Marzan LM, Mulvaney P: Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach. Phys Chem Chem Phys. 2004, 6: 5056-5060. 10.1039/b405157b

    Sexual Relationships in Hispanic Countries: a Literature Review

    Get PDF
    This is a pre-print of an article published in Current Sexual Health Reports. The final authenticated version is available online at: https://doi.org/10.1007/s11930-020-00272-6Purpose of Review: Sexuality is a complex dimension for which culture seems to play an important role, particularly in countries that are more traditional. This review summarizes the knowledge about sexual relationships in Hispanic countries, considering sexual debut, attitudes, behaviors, and satisfaction. Recent Findings: In line with the literature reviewed, the sexual double standard seems to be continuing to influence sexual relationships. Some countries show more open expressions of sexuality based on the level of gender inequality or sexualized context, and within countries, variables such as religious commitment, family characteristics, and access to resources may play important roles in sexuality. Summary: Future research, policies, and interventions should consider these specific characteristics, including these forms of expression of sexuality, in the adjustment of cross-cultural and cross-national strategies

    Final results from the PERUSE study of first-line pertuzumab plus trastuzumab plus a taxane for HER2-positive locally recurrent or metastatic breast cancer, with a multivariable approach to guide prognostication

    Get PDF
    Background: The phase III CLinical Evaluation Of Pertuzumab And TRAstuzumab (CLEOPATRA) trial established the combination of pertuzumab, trastuzumab and docetaxel as standard first-line therapy for human epidermal growth factor receptor 2 (HER2)-positive locally recurrent/metastatic breast cancer (LR/mBC). The multicentre single-arm PERtUzumab global SafEty (PERUSE) study assessed the safety and efficacy of pertuzumab and trastuzumab combined with investigator-selected taxane in this setting. Patients and methods: Eligible patients with inoperable HER2-positive LR/mBC and no prior systemic therapy for LR/mBC (except endocrine therapy) received docetaxel, paclitaxel or nab-paclitaxel with trastuzumab and pertuzumab until disease progression or unacceptable toxicity. The primary endpoint was safety. Secondary endpoints included progression-free survival (PFS) and overall survival (OS). Prespecified subgroup analyses included subgroups according to taxane, hormone receptor (HR) status and prior trastuzumab. Exploratory univariable analyses identified potential prognostic factors; those that remained significant in multivariable analysis were used to analyse PFS and OS in subgroups with all, some or none of these factors. Results: Of 1436 treated patients, 588 (41%) initially received paclitaxel and 918 (64%) had HR-positive disease. The most common grade 653 adverse events were neutropenia (10%, mainly with docetaxel) and diarrhoea (8%). At the final analysis (median follow-up: 5.7 years), median PFS was 20.7 [95% confidence interval (CI) 18.9-23.1] months overall and was similar irrespective of HR status or taxane. Median OS was 65.3 (95% CI 60.9-70.9) months overall. OS was similar regardless of taxane backbone but was more favourable in patients with HR-positive than HR-negative LR/mBC. In exploratory analyses, trastuzumab-pretreated patients with visceral disease had the shortest median PFS (13.1 months) and OS (46.3 months). Conclusions: Mature results from PERUSE show a safety and efficacy profile consistent with results from CLEOPATRA and median OS exceeding 5 years. Results suggest that paclitaxel is a valid alternative to docetaxel as backbone chemotherapy. Exploratory analyses suggest risk factors that could guide future trial design

    Final results from the PERUSE study of first-line pertuzumab plus trastuzumab plus a taxane for HER2-positive locally recurrent or metastatic breast cancer, with a multivariable approach to guide prognostication

    Get PDF

    The Global Alliance for Infections in Surgery : defining a model for antimicrobial stewardship-results from an international cross-sectional survey

    Get PDF
    Background: Antimicrobial Stewardship Programs (ASPs) have been promoted to optimize antimicrobial usage and patient outcomes, and to reduce the emergence of antimicrobial-resistant organisms. However, the best strategies for an ASP are not definitively established and are likely to vary based on local culture, policy, and routine clinical practice, and probably limited resources in middle-income countries. The aim of this study is to evaluate structures and resources of antimicrobial stewardship teams (ASTs) in surgical departments from different regions of the world. Methods: A cross-sectional web-based survey was conducted in 2016 on 173 physicians who participated in the AGORA (Antimicrobials: A Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections) project and on 658 international experts in the fields of ASPs, infection control, and infections in surgery. Results: The response rate was 19.4%. One hundred fifty-six (98.7%) participants stated their hospital had a multidisciplinary AST. The median number of physicians working inside the team was five [interquartile range 4-6]. An infectious disease specialist, a microbiologist and an infection control specialist were, respectively, present in 80.1, 76.3, and 67.9% of the ASTs. A surgeon was a component in 59.0% of cases and was significantly more likely to be present in university hospitals (89.5%, p <0.05) compared to community teaching (83.3%) and community hospitals (66.7%). Protocols for pre-operative prophylaxis and for antimicrobial treatment of surgical infections were respectively implemented in 96.2 and 82.3% of the hospitals. The majority of the surgical departments implemented both persuasive and restrictive interventions (72.8%). The most common types of interventions in surgical departments were dissemination of educational materials (62.5%), expert approval (61.0%), audit and feedback (55.1%), educational outreach (53.7%), and compulsory order forms (51.5%). Conclusion: The survey showed a heterogeneous organization of ASPs worldwide, demonstrating the necessity of a multidisciplinary and collaborative approach in the battle against antimicrobial resistance in surgical infections, and the importance of educational efforts towards this goal.Peer reviewe
    corecore