82 research outputs found

    How the biotin–streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer

    Get PDF
    The interaction between SA (streptavidin) and biotin is one of the strongest non-covalent interactions in Nature. SA is a widely used tool and a paradigm for protein–ligand interactions. We previously developed a SA mutant, termed Tr (traptavidin), possessing a 10-fold lower off-rate for biotin, with increased mechanical and thermal stability. In the present study, we determined the crystal structures of apo-Tr and biotin–Tr at 1.5 Å resolution. In apo-SA the loop (L3/4), near biotin's valeryl tail, is typically disordered and open, but closes upon biotin binding. In contrast, L3/4 was shut in both apo-Tr and biotin–Tr. The reduced flexibility of L3/4 and decreased conformational change on biotin binding provide an explanation for Tr's reduced biotin off- and on-rates. L3/4 includes Ser45, which forms a hydrogen bond to biotin consistently in Tr, but erratically in SA. Reduced breakage of the biotin–Ser45 hydrogen bond in Tr is likely to inhibit the initiating event in biotin's dissociation pathway. We generated a Tr with a single biotin-binding site rather than four, which showed a simi-larly low off-rate, demonstrating that Tr's low off-rate was governed by intrasubunit effects. Understanding the structural features of this tenacious interaction may assist the design of even stronger affinity tags and inhibitors

    Determinants of medication adherence to antihypertensive medications among a Chinese population using Morisky medication adherence scale

    Get PDF
    <b>Background and objectives</b> Poor adherence to medications is one of the major public health challenges. Only one-third of the population reported successful control of blood pressure, mostly caused by poor drug adherence. However, there are relatively few reports studying the adherence levels and their associated factors among Chinese patients. This study aimed to study the adherence profiles and the factors associated with antihypertensive drug adherence among Chinese patients.<p></p> <b>Methods</b> A cross-sectional study was conducted in an outpatient clinic located in the New Territories Region of Hong Kong. Adult patients who were currently taking at least one antihypertensive drug were invited to complete a self-administered questionnaire, consisting of basic socio-demographic profile, self-perceived health status, and self-reported medication adherence. The outcome measure was the Morisky Medication Adherence Scale (MMAS-8). Good adherence was defined as MMAS scores greater than 6 points (out of a total score of 8 points).<p></p> <b>Results</b> From 1114 patients, 725 (65.1%) had good adherence to antihypertensive agents. Binary logistic regression analysis was conducted. Younger age, shorter duration of antihypertensive agents used, job status being employed, and poor or very poor self-perceived health status were negatively associated with drug adherence.<p></p> <b>Conclusion</b> This study reported a high proportion of poor medication adherence among hypertensive subjects. Patients with factors associated with poor adherence should be more closely monitored to optimize their drug taking behavior

    Predictors of Medication Adherence and Blood Pressure Control among Saudi Hypertensive Patients Attending Primary Care Clinics: A Cross-Sectional Study

    Get PDF
    Purpose To assess the level of medication adherence and to investigate predictors of medication adherence and blood pressure control among hypertensive patients attending primary healthcare clinics in Makkah, Saudi Arabia. Patients and methods Hypertensive patients meeting the eligibility criteria were recruited from eight primary care clinics between January and May 2016 for this study. The patients completed Arabic version of Morisky Medication Adherence Scale (MMAS-8), an eight-item validated, self-reported measure to assess medication adherence. A structured data collection form was used to record patients’ sociodemographic, medical and medication data. Results Two hundred and four patients, of which 71.6% were females, participated in the study. Patients’ mean age was 59.1 (SD 12.2). The mean number of medication used by patients was 4.4 (SD 1.89). More than half (110; 54%) of the patients were non-adherent to their medications (MMAS score 65 years (OR 2.0 [95% CI: 1.0–4.2; P = 0.04]), and being diabetic (OR 0.25 [95% CI: 0.1–0.6; P = 0.04]) were found to be independent predictors of medication adherence. Conclusion Medication adherence is alarmingly low among hypertensive patients attending primary care clinics in Saudi Arabia which may partly explain observed poor blood pressure control. There is a clear need to educate patients about the importance of medication adherence and its impact on improving clinical outcomes. Future research should identify barriers to medication adherence among Saudi hypertensive patients

    Construction of Chimeric Dual-Chain Avidin by Tandem Fusion of the Related Avidins

    Get PDF
    BACKGROUND: Avidin is a chicken egg-white protein with high affinity to vitamin H, also known as D-biotin. Many applications in life science research are based on this strong interaction. Avidin is a homotetrameric protein, which promotes its modification to symmetrical entities. Dual-chain avidin, a genetically engineered avidin form, has two circularly permuted chicken avidin monomers that are tandem-fused into one polypeptide chain. This form of avidin enables independent modification of the two domains, including the two biotin-binding pockets; however, decreased yields in protein production, compared to wt avidin, and complicated genetic manipulation of two highly similar DNA sequences in the tandem gene have limited the use of dual-chain avidin in biotechnological applications. PRINCIPAL FINDINGS: To overcome challenges associated with the original dual-chain avidin, we developed chimeric dual-chain avidin, which is a tandem fusion of avidin and avidin-related protein 4 (AVR4), another member of the chicken avidin gene family. We observed an increase in protein production and better thermal stability, compared with the original dual-chain avidin. Additionally, PCR amplification of the hybrid gene was more efficient, thus enabling more convenient and straightforward modification of the dual-chain avidin. When studied closer, the generated chimeric dual-chain avidin showed biphasic biotin dissociation. SIGNIFICANCE: The improved dual-chain avidin introduced here increases its potential for future applications. This molecule offers a valuable base for developing bi-functional avidin tools for bioseparation, carrier proteins, and nanoscale adapters. Additionally, this strategy could be helpful when generating hetero-oligomers from other oligomeric proteins with high structural similarity

    Bifunctional Avidin with Covalently Modifiable Ligand Binding Site

    Get PDF
    The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (strept)avidin to improve the existing applications. Even so, (strept)avidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces

    Beeldcultuur, een drieluik.I: Deconstructie van het fenomeen culturele studies

    Get PDF
    An important process in glass manufacture is the forming of the product. The forming process takes place at high rate, involves extreme temperatures and is characterised by large deformations. The process can be modelled as a coupled thermodynamical/mechanical problem including the interaction between glass, air and equipment. In this paper a general mathematical model for glass forming is derived, which is specified for different forming processes, in particular pressing and blowing. The model should be able to correctly represent the flow of the glass and the energy exchange during the process. Various modelling aspects are discussed for each process, while several key issues, such as the motion of the plunger and the evolution of the glass-air interfaces, are examined thoroughly. Finally, some examples of process simulations for existing simulation tools are provided

    The impact of self-efficacy, alexithymia and multiple traumas on posttraumatic stress disorder and psychiatric co-morbidity following epileptic seizures: A moderated mediation analysis

    Get PDF
    This study investigated the incidence of posttraumatic stress disorder (PTSD) and psychiatric co-morbidity following epileptic seizure, whether alexithymia mediated the relationship between self-efficacy and psychiatric outcomes, and whether the mediational effect was moderated by the severity of PTSD from other traumas. Seventy-one (M=31, F=40) people with a diagnosis of epilepsy recruited from support groups in the United Kingdom completed the Posttraumatic Stress Diagnostic Scale, the Hospital Anxiety and Depression Scale, the Toronto Alexithymia Scale-20 and the Generalized Self-Efficacy Scale. They were compared with 71 people (M=29, F=42) without epilepsy. For people with epilepsy, 51% and 22% met the diagnostic criteria for post-epileptic seizure PTSD and for PTSD following one other traumatic life event respectively. For the control group, 24% met the diagnostic criteria for PTSD following other traumatic life events. The epilepsy group reported significantly more anxiety and depression than the control. Partial least squares (PLS) analysis showed that self-efficacy was significantly correlated with alexithymia, post-epileptic seizure PTSD and psychiatric co-morbidity. Alexithymia was also significantly correlated with post-epileptic seizure PTSD and psychiatric co-morbidity. Mediation analyses confirmed that alexithymia mediated the path between self-efficacy and post-epileptic seizure PTSD and psychiatric co-morbidity. Moderated mediation also confirmed that self-efficacy and PTSD from one other trauma moderated the effect of alexithymia on outcomes. To conclude, people can develop posttraumatic stress disorder symptoms and psychiatric co-morbidity following epileptic seizure. These psychiatric outcomes are closely linked with their belief in personal competence to deal with stressful situations and regulate their own functioning, to process rather than defend against distressing emotions, and with the degree of PTSD from other traumas. © 2013 Elsevier Ireland Ltd

    Dynamic Allostery in the Methionine Repressor Revealed by Force Distribution Analysis

    Get PDF
    Many fundamental cellular processes such as gene expression are tightly regulated by protein allostery. Allosteric signal propagation from the regulatory to the active site requires long-range communication, the molecular mechanism of which remains a matter of debate. A classical example for long-range allostery is the activation of the methionine repressor MetJ, a transcription factor. Binding of its co-repressor SAM increases its affinity for DNA several-fold, but has no visible conformational effect on its DNA binding interface. Our molecular dynamics simulations indicate correlated domain motions within MetJ, and quenching of these dynamics upon SAM binding entropically favors DNA binding. From monitoring conformational fluctuations alone, it is not obvious how the presence of SAM is communicated through the largely rigid core of MetJ and how SAM thereby is able to regulate MetJ dynamics. We here directly monitored the propagation of internal forces through the MetJ structure, instead of relying on conformational changes as conventionally done. Our force distribution analysis successfully revealed the molecular network for strain propagation, which connects collective domain motions through the protein core. Parts of the network are directly affected by SAM binding, giving rise to the observed quenching of fluctuations. Our results are in good agreement with experimental data. The force distribution analysis suggests itself as a valuable tool to gain insight into the molecular function of a whole class of allosteric proteins

    Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin—an insight from molecular dynamics simulations with classical and ab initio force fields

    Get PDF
    In the field of enzymatic catalysis, creating activity from a non catalytic scaffold is a daunting task. Introduction of a catalytically active moiety within a protein scaffold offers an attractive means for the creation of artificial metalloenzymes. With this goal in mind, introduction of a biotinylated d6-piano-stool complex within streptavidin (SAV) affords enantioselective artificial transfer-hydrogenases for the reduction of prochiral ketones. Based on an X-ray crystal structure of a highly selective hybrid catalyst, displaying significant disorder around the biotinylated catalyst [η6-(p-cymene)Ru(Biot-p-L)Cl], we report on molecular dynamics simulations to shed light on the protein–cofactor interactions and contacts. The results of these simulations with classical force field indicate that the SAV-biotin and SAV-catalyst complexes are more stable than ligand-free SAV. The point mutations introduced did not affect significantly the overall behavior of SAV and, unexpectedly, the P64G substitution did not provide additional flexibility to the protein scaffold. The metal-cofactor proved to be conformationally flexible, and the S112K or P64G mutants proved to enhance this effect in the most pronounced way. The network of intermolecular hydrogen bonds is efficient at stabilizing the position of biotin, but much less at fixing the conformation of an extended biotinylated ligand. This leads to a relative conformational freedom of the metal-cofactor, and a poorly localized catalytic metal moiety. MD calculations with ab initio potential function suggest that the hydrogen bonds alone are not sufficient factors for full stabilization of the biotin. The hydrophobic biotin-binding pocket (and generally protein scaffold) maintains the hydrogen bonds between biotin and protein
    corecore