191 research outputs found

    Dynamics of the Ribosomal Subunit Interface during TRNA Translocation at Near-Atomic Resolution

    Get PDF

    Urea impedes the hydrophobic collapse of partially unfolded proteins.

    Get PDF
    AbstractProteins are denatured in aqueous urea solution. The nature of the molecular driving forces has received substantial attention in the past, whereas the question how urea acts at different phases of unfolding is not yet well understood at the atomic level. In particular, it is unclear whether urea actively attacks folded proteins or instead stabilizes unfolded conformations. Here we investigated the effect of urea at different phases of unfolding by molecular dynamics simulations, and the behavior of partially unfolded states in both aqueous urea solution and in pure water was compared. Whereas the partially unfolded protein in water exhibited hydrophobic collapses as primary refolding events, it remained stable or even underwent further unfolding steps in aqueous urea solution. Further, initial unfolding steps of the folded protein were found not to be triggered by urea, but instead, stabilized. The underlying mechanism of this stabilization is a favorable interaction of urea with transiently exposed, less-polar residues and the protein backbone, thereby impeding back-reactions. Taken together, these results suggest that, quite generally, urea-induced protein unfolding proceeds primarily not by active attack. Rather, thermal fluctuations toward the unfolded state are stabilized and the hydrophobic collapse of partially unfolded proteins toward the native state is impeded. As a result, the equilibrium is shifted toward the unfolded state

    Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations

    Get PDF
    Receptor-ligand interactions are essential for biological function and their binding strength is commonly explained in terms of static lock-and-key models based on molecular complementarity. However, detailed information of the full unbinding pathway is often lacking due, in part, to the static nature of atomic structures and ensemble averaging inherent to bulk biophysics approaches. Here we combine molecular dynamics and high-speed force spectroscopy on the streptavidin-biotin complex to determine the binding strength and unbinding pathways over the widest dynamic range. Experiment and simulation show excellent agreement at overlapping velocities and provided evidence of the unbinding mechanisms. During unbinding, biotin crosses multiple energy barriers and visits various intermediate states far from the binding pocket while streptavidin undergoes transient induced fits, all varying with loading rate. This multistate process slows down the transition to the unbound state and favors rebinding, thus explaining the long lifetime of the complex. We provide an atomistic, dynamic picture of the unbinding process, replacing a simple two-state picture with one that involves many routes to the lock and rate-dependent induced-fit motions for intermediates, which might be relevant for other receptor-ligand bonds.Comment: 21 pages, 4 figure

    A Molecular Dynamics Simulation of the Human Lysozyme ā€“ Camelid VHH HL6 Antibody System

    Get PDF
    Amyloid diseases such as Alzheimerā€™s and thrombosis are characterized by an aberrant assembly of specific proteins or protein fragments into fibrils and plaques that are deposited in various tissues and organs. The single-domain fragment of a camelid antibody was reported to be able to combat against wild-type human lysozyme for inhibiting in-vitro aggregations of the amyloidogenic variant (D67H). The present study is aimed at elucidating the unbinding mechanics between the D67H lysozyme and VHH HL6 antibody fragment by using steered molecular dynamics (SMD) simulations on a nanosecond scale with different pulling velocities. The results of the simulation indicated that stretching forces of more than two nano Newton (nN) were required to dissociate the proteinantibody system, and the hydrogen bond dissociation pathways were computed

    Mechanical Stretching of Proteins: Calmodulin and Titin

    Full text link
    Mechanical unfolding of several domains of calmodulin and titin is studied using a Go-like model with a realistic contact map and Lennard-Jones contact interactions. It is shown that this simple model captures the experimentally observed difference between the two proteins: titin is a spring that is tough and strong whereas calmodulin acts like a weak spring with featureless force-displacement curves. The difference is related to the dominance of the alpha secondary structures in the native structure of calmodulin. The tandem arrangements of calmodulin unwind simultaneously in each domain whereas the domains in titin unravel in a serial fashion. The sequences of contact events during unraveling are correlated with the contact order, i.e. with the separation between contact making amino acids along the backbone in the native state. Temperature is found to affect stretching in a profound way.Comment: To be published in a special bio-issue of Physica A; 14 figure

    Constraint methods for determining pathways and free energy of activated processes

    Full text link
    Activated processes from chemical reactions up to conformational transitions of large biomolecules are hampered by barriers which are overcome only by the input of some free energy of activation. Hence, the characteristic and rate-determining barrier regions are not sufficiently sampled by usual simulation techniques. Constraints on a reaction coordinate r have turned out to be a suitable means to explore difficult pathways without changing potential function, energy or temperature. For a dense sequence of values of r, the corresponding sequence of simulations provides a pathway for the process. As only one coordinate among thousands is fixed during each simulation, the pathway essentially reflects the system's internal dynamics. From mean forces the free energy profile can be calculated to obtain reaction rates and insight in the reaction mechanism. In the last decade, theoretical tools and computing capacity have been developed to a degree where simulations give impressive qualitative insight in the processes at quantitative agreement with experiments. Here, we give an introduction to reaction pathways and coordinates, and develop the theory of free energy as the potential of mean force. We clarify the connection between mean force and constraint force which is the central quantity evaluated, and discuss the mass metric tensor correction. Well-behaved coordinates without tensor correction are considered. We discuss the theoretical background and practical implementation on the example of the reaction coordinate of targeted molecular dynamics simulation. Finally, we compare applications of constraint methods and other techniques developed for the same purpose, and discuss the limits of the approach

    How the biotinā€“streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer

    Get PDF
    The interaction between SA (streptavidin) and biotin is one of the strongest non-covalent interactions in Nature. SA is a widely used tool and a paradigm for proteinā€“ligand interactions. We previously developed a SA mutant, termed Tr (traptavidin), possessing a 10-fold lower off-rate for biotin, with increased mechanical and thermal stability. In the present study, we determined the crystal structures of apo-Tr and biotinā€“Tr at 1.5Ā Ć… resolution. In apo-SA the loop (L3/4), near biotin's valeryl tail, is typically disordered and open, but closes upon biotin binding. In contrast, L3/4 was shut in both apo-Tr and biotinā€“Tr. The reduced flexibility of L3/4 and decreased conformational change on biotin binding provide an explanation for Tr's reduced biotin off- and on-rates. L3/4 includes Ser45, which forms a hydrogen bond to biotin consistently in Tr, but erratically in SA. Reduced breakage of the biotinā€“Ser45 hydrogen bond in Tr is likely to inhibit the initiating event in biotin's dissociation pathway. We generated a Tr with a single biotin-binding site rather than four, which showed a simi-larly low off-rate, demonstrating that Tr's low off-rate was governed by intrasubunit effects. Understanding the structural features of this tenacious interaction may assist the design of even stronger affinity tags and inhibitors

    Mesodynamics in the SARS nucleocapsid measured by NMR field cycling

    Get PDF
    Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R1 at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire Ī²-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8Ā ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions
    • ā€¦
    corecore