89 research outputs found

    AmortVugg: Interposable, Wireless Technology

    Full text link
    The synthesis of compilers has visualized telephony, and current trends suggest that the deployment of object-oriented languages will soon emerge. Given the trends in signed symmetries, experts daringly note the development of wide-area networks, which embodies the natural principles of networking. In this work we concentrate our efforts on demonstrating that the Turing machine can be made collaborative, read-write, and flexible

    Quantitative estimate of heat flow from a mid-ocean ridge axial valley, Raven field, Juan de Fuca Ridge : observations and inferences

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 119 (2014): 6841–6854, doi:10.1002/2014JB011086.A systematic heat flow survey using thermal blankets within the Endeavour segment of the Juan de Fuca Ridge axial valley provides quantitative estimates of the magnitude and distribution of conductive heat flow at a mid-ocean ridge, with the goal of testing current models of hydrothermal circulation present within newly formed oceanic crust. Thermal blankets were deployed covering an area of 700 by 450 m in the Raven Hydrothermal vent field area located 400 m north of the Main Endeavour hydrothermal field. A total of 176 successful blanket deployment sites measured heat flow values that ranged from 0 to 31 W m−2. Approximately 53% of the sites recorded values lower than 100 mW m−2, suggesting large areas of seawater recharge and advective extraction of lithospheric heat. High heat flow values were concentrated around relatively small “hot spots.” Integration of heat flow values over the Raven survey area gives an estimate of conductive heat output of 0.3 MW, an average of 0.95 W m−2, over the survey area. Fluid circulation cell dimensions and scaling equations allow calculation of a Rayleigh number of approximately 700 in Layer 2A. The close proximity of high and low heat flow areas, coupled with previous estimates of surficial seafloor permeability, argues for the presence of small-scale hydrothermal fluid circulation cells within the high-porosity uppermost crustal layer of the axial seafloor.This work has been funded by the National Science Foundation under grant OCE-1037870 and was supported under a National Science Foundation Graduate Research Fellowship to MSS2015-03-1

    High-resolution near-bottom vector magnetic anomalies over Raven Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 119 (2014): 7389–7403, doi:10.1002/2014JB011223.High-resolution, near-bottom vector magnetic data were collected by remotely operated vehicle Jason over the Raven hydrothermal vent field (47°57.3′N 129°5.75′W) located north of Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. The survey was part of a comprehensive heat flow study of the Raven site using innovative thermal blanket technology to map the heat flux and crustal fluid pathways around a solitary hydrothermal vent field. Raven hydrothermal activity is presently located along the western axial valley wall, while additional inactive hydrothermal deposits are found to the NW on the upper rift valley wall. Magnetic inversion results show discrete areas of reduced magnetization associated with both active and inactive hydrothermal vent deposits that also show high conductive heat flow. Higher spatial variability in the heat flow patterns compared to the magnetization is consistent with the heat flow reflecting the currently active but ephemeral thermal environment of fluid flow, while crustal magnetization is representative of the static time-averaged effect of hydrothermal alteration. A general NW to SE trend in reduced magnetization across the Raven area correlates closely with the distribution of hydrothermal deposits and heat flux patterns and suggests that the fluid circulation system at depth is likely controlled by local crustal structure and magma chamber geometry. Magnetic gradient tensor components computed from vector magnetic data improve the resolution of the magnetic anomaly source and indicate that the hydrothermally altered zone directly beneath the Raven site is approximately 15 × 106 m3 in volume.This work was funded by the National Science Foundation under grant OCE-1037840 to Maurice Tivey and grant OCE-1037870 to H. Paul Johnson.2015-04-0

    Hydrothermal circulation within the Endeavour Segment, Juan de Fuca Ridge

    Get PDF
    Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q05002, doi:10.1029/2009GC002957.Areas of the seafloor at mid-ocean ridges where hydrothermal vents discharge are easily recognized by the dramatic biological, physical, and chemical processes that characterize such sites. Locations where seawater flows into the seafloor to recharge hydrothermal cells within the crustal reservoir are by contrast almost invisible but can be indirectly identified by a systematic grid of conductive heat flow measurements. An array of conductive heat flow stations in the Endeavour axial valley of the Juan de Fuca Ridge has identified recharge zones that appear to represent a nested system of fluid circulation paths. At the scale of an axial rift valley, conductive heat flow data indicate a general cross-valley fluid flow, where seawater enters the shallow subsurface crustal reservoir at the eastern wall of the Endeavour axial valley and undergoes a kilometer of horizontal transit beneath the valley floor, finally exiting as warm hydrothermal fluid discharge on the western valley bounding wall. Recharge zones also have been identified as located within an annular ring of very cold seafloor around the large Main Endeavour Hydrothermal Field, with seawater inflow occurring within faults that surround the fluid discharge sites. These conductive heat flow data are consistent with previous models where high-temperature fluid circulation cells beneath large hydrothermal vent fields may be composed of narrow vertical cylinders. Subsurface fluid circulation on the Endeavour Segment occurs at various crustal depths in three distinct modes: (1) general east to west flow across the entire valley floor, (2) in narrow cylinders that penetrate deeply to high-temperature heat sources, and (3) supplying low-temperature diffuse vents where seawater is entrained into the shallow uppermost crust by the adjacent high-temperature cylindrical systems. The systematic array of conductive heat flow measurements over the axial valley floor averaged ∼150 mW/m2, suggesting that only about 3% of the total energy flux of ocean crustal formation is removed by conductive heat transfer, with the remainder being dissipated to overlying seawater by fluid advection.Funding was provided by NSF grants OCE0318566 and OCE0241294 and NSF/SGER grant OCE0902626

    Bottom pressure signals at the TAG deep-sea hydrothermal field : evidence for short-period, flow-induced ground deformation

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 36 (2009): L19301, doi:10.1029/2009GL040006.Bottom pressure measurements acquired from the TAG hydrothermal field on the Mid-Atlantic Ridge (26°N) contain clusters of narrowband spectral peaks centered at periods from 22 to 53.2 minutes. The strongest signal at 53.2 min corresponds to 13 mm of water depth variation. Smaller, but statistically significant, signals were also observed at periods of 22, 26.5, 33.4, and 37.7 min (1–4 mm amplitude). These kinds of signals have not previously been observed in the ocean, and they appear to represent vertical motion of the seafloor in response to hydrothermal flow - similar in many ways to periodic terrestrial geysers. We demonstrate that displacements of 13 mm can be produced by relatively small flow-induced pressures (several kPa) if the source region is less than ∼100 m below the seafloor. We suggest that the periodic nature of the signals results from a non-linear relationship between fluid pore pressure and crustal permeability

    Serpentinization in the trench-outer rise region offshore of Nicaragua: constraints from seismic refraction and wide-angle data

    Get PDF
    Recent seismic evidence suggested that most oceanic plate hydration is associated with trench-outer rise faulting prior to subduction. Hydration at trenches may have a significant impact on the subduction zone water cycle. Previous seismic experiments conducted to the northwest of Nicoya Peninsula, Northern Costa Rica, have shown that the subducting Cocos lithosphere is pervasively altered, which was interpreted to be due to both hydration (serpentinization) and fracturing of the crustal and upper-mantle rocks. New seismic wide-angle reflection and refraction data were collected along two profiles, running parallel to the Middle American trench axis offshore of central Nicaragua, revealing lateral changes of the seismic properties of the subducting lithosphere. Seismic structure along both profiles is characterized by low velocities both in the crust and upper mantle. Velocities in the uppermost mantle are found to be in the range 7.3–7.5 km s−1; thus are 8–10 per cent lower than velocities typical for unaltered peridotites and hence confirm the assumption that serpentinization is a common process at the trench-outer rise area offshore of Nicaragua. In addition, a prominent velocity anomaly occurred within the crust beneath two seamounts. Here, velocity reduction may indicate increased porosity and perhaps permeability, supporting the idea that seamounts serve as sites for water percolation and circulation

    In situ enrichment of ocean crust microbes on igneous minerals and glasses using an osmotic flow-through device

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q06007, doi:10.1029/2010GC003424.The Integrated Ocean Drilling Program (IODP) Hole 1301A on the eastern flank of Juan de Fuca Ridge was used in the first long-term deployment of microbial enrichment flow cells using osmotically driven pumps in a subseafloor borehole. Three novel osmotically driven colonization systems with unidirectional flow were deployed in the borehole and incubated for 4 years to determine the microbial colonization preferences for 12 minerals and glasses present in igneous rocks. Following recovery of the colonization systems, we measured cell density on the minerals and glasses by fluorescent staining and direct counting and found some significant differences between mineral samples. We also determined the abundance of mesophilic and thermophilic culturable organotrophs grown on marine R2A medium and identified isolates by partial 16S or 18S rDNA sequencing. We found that nine distinct phylotypes of culturable mesophilic oligotrophs were present on the minerals and glasses and that eight of the nine can reduce nitrate and oxidize iron. Fe(II)-rich olivine minerals had the highest density of total countable cells and culturable organotrophic mesophiles, as well as the only culturable organotrophic thermophiles. These results suggest that olivine (a common igneous mineral) in seawater-recharged ocean crust is capable of supporting microbial communities, that iron oxidation and nitrate reduction may be important physiological characteristics of ocean crust microbes, and that heterogeneously distributed minerals in marine igneous rocks likely influence the distribution of microbial communities in the ocean crust.The subseafloor flow cell enrichment chambers were funded by a small grant from the Ocean Drilling Program. This work was also funded by NASA grant NNX08AO22G, NSF OCE 0727119 to C.G.W., NSF OCE 0452333 to S.M.S., and OCE‐0550713 and OCE‐0727952 to A.T.F., PSU, and OSU

    Seamounts off the West Antarctic margin: A case for non-hotspot driven intraplate volcanism

    Get PDF
    Highlights: • Marie Byrd Seamounts (MBS) formed off Antarctica at 65-56 Ma in an extensional regime • MBS originate from HIMU-type mantle attached at the base of the Antarctic lithosphere • Continental insulation flow transferred HIMU mantle into the oceanic mantle New radiometric age and geochemical data of volcanic rocks from the guyot-type Marie Byrd Seamounts (MBS) and the De Gerlache Seamounts and Peter I Island (Amundsen Sea) are presented. 40Ar/39Ar ages of the shield phase of three MBS are Early Cenozoic (65 to 56 Ma) and indicate formation well after creation of the Pacific-Antarctic Ridge. A Pliocene age (3.0 Ma) documents a younger phase of volcanism at one MBS and a Pleistocene age (1.8 Ma) for the submarine base of Peter I Island. Together with published data, the new age data imply that Cenozoic intraplate magmatism occurred at distinct time intervals in spatially confined areas of the Amundsen Sea, excluding an origin through a fixed mantle plume. Peter I Island appears strongly influenced by an EMII type mantle component that may reflect shallow mantle recycling of a continental raft during the final breakup of Gondwana. By contrast the Sr-Nd-Pb-Hf isotopic compositions of the MBS display a strong affinity to a HIMU type mantle source. On a regional scale the isotopic signatures overlap with those from volcanics related to the West Antarctic Rift System, and Cretaceous intraplate volcanics in and off New Zealand. We propose reactivation of the HIMU material, initially accreted to the base of continental lithosphere during the pre-rifting stage of Marie Byrd Land/Zealandia to explain intraplate volcanism in the Amundsen Sea in the absence of a long-lived hotspot. We propose continental insulation flow as the most plausible mechanism to transfer the sub-continental accreted plume material into the shallow oceanic mantle. Crustal extension at the southern boundary of the Bellingshausen Plate from about 74 to 62 Ma may have triggered adiabatic rise of the HIMU material from the base of Marie Byrd Land to form the MBS. The De Gerlache Seamounts are most likely related to a preserved zone of lithospheric weakness underneath the De Gerlache Gravity Anomaly

    Thermal regime of the Costa Rican convergent margin: 2. Thermal models of the shallow Middle America subduction zone offshore Costa Rica

    Get PDF
    At the Costa Rica margin along the Middle America Trench along‐strike variations in heat flow are well mapped. These variations can be understood in terms of either ventilated fluid flow, where exposed basement allows fluids to freely advect heat between the crustal aquifer and ocean, or insulated fluid flow where continuous sediment cover restricts heat advection to within the crustal aquifer. We model fluid flow within the subducting aquifer using Nusselt number approximations coupled with finite element models of subduction and explore its effect on temperatures along the subduction thrust. The sensitivity of these models to the initial thermal state of the plate and styles of fluid flow, either ventilated or insulated, is explored. Heat flow measurements on cool crust accreted at the East Pacific Rise are consistent with ventilated hydrothermal cooling that continues with subduction. These models yield much cooler temperatures than predicted from simulations initialized with conductive predictions and without hydrothermal circulation. Heat flow transects on warm crust accreted at the Cocos‐Nazca spreading center are consistent with models of insulated hydrothermal circulation that advects heat updip within the subducting crustal aquifer. Near the trench these models are warmer than conductive predictions and cooler than conductive predictions downdip of the trench. Comparisons between microseismicity and modeled isotherms suggest that the updip limit of microseismicity occurs at temperatures warmer than 100°C and that the downdip extent of microseismicity is bounded by the intersection of the subduction thrust with the base of the overriding crust
    corecore