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ABSTRACT  

 

New radiometric age and geochemical data of volcanic rocks from the guyot-type Marie Byrd 

Seamounts (MBS) and the De Gerlache Seamounts and Peter I Island (Amundsen Sea) are 

presented. 
40

Ar/
39

Ar ages of the shield phase of three MBS are Early Cenozoic (65 to 56 Ma) and 

indicate formation well after creation of the Pacific-Antarctic Ridge. A Pliocene age (3.0 Ma) 

documents a younger phase of volcanism at one MBS and a Pleistocene age (1.8 Ma) for the 

submarine base of Peter I Island. Together with published data, the new age data imply that 

Cenozoic intraplate magmatism occurred at distinct time intervals in spatially confined areas of 

the Amundsen Sea, excluding an origin through a fixed mantle plume. Peter I Island appears 

strongly influenced by an EMII type mantle component that may reflect shallow mantle 
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recycling of a continental raft during the final breakup of Gondwana. By contrast the Sr-Nd-Pb-

Hf isotopic compositions of the MBS display a strong affinity to a HIMU type mantle source. On 

a regional scale the isotopic signatures overlap with those from volcanics related to the West 

Antarctic Rift System, and Cretaceous intraplate volcanics in and off New Zealand. We propose 

reactivation of the HIMU material, initially accreted to the base of continental lithosphere during 

the pre-rifting stage of Marie Byrd Land/Zealandia to explain intraplate volcanism in the 

Amundsen Sea in the absence of a long-lived hotspot. We propose continental insulation flow as 

the most plausible mechanism to transfer the sub-continental accreted plume material into the 

shallow oceanic mantle. Crustal extension at the southern boundary of the Bellingshausen Plate 

from about 74 to 62 Ma may have triggered adiabatic rise of the HIMU material from the base of 

Marie Byrd Land to form the MBS. The De Gerlache Seamounts are most likely related to a 

preserved zone of lithospheric weakness underneath the De Gerlache Gravity Anomaly. 

 

KEYWORDS: Antarctica, Marie Byrd Seamounts, intraplate volcanism, 
40

Ar/
39

Ar age dates, 

major and trace element and  Sr-Nd-Pb-Hf isotope geochemistry 

 

1. Introduction 

 

Seamounts are common bathymetric features on the seafloor and most are of volcanic 

origin. Although only a fraction of them have been mapped by ship-based echo-sounding, 

satellite altimetry has identified more than 13,000 seamounts taller than 1.5 km and predicts 

more than 100,000 seamounts higher than 1 km (e.g., Smith and Sandwell, 1997; Wessel et al., 

2010). Seamounts are important probes of the composition and dynamics of the oceanic mantle 

and, if they form parts of hotspot tracks, they can also be important recorders of past plate 

motions (Hofmann, 2003; Tarduno et al., 2003; Koppers et al., 2012). They also form oases for 
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marine life and biodiversity (e.g., Shank, 2010 for a recent review) and are significant 

components of hydrogeological systems focusing the exchange of heat and fluids between the 

oceanic lithosphere and the oceans (e.g., Fisher et al., 2003; Harris et al., 2004; Hutnak et al., 

2008; Klügel et al., 2011). The latter processes can lead to the formation of economically 

important mineral deposits (e.g., Hein et al., 2010), which are, for example, commercially mined 

in some accreted seamount complexes (e.g., Safonova, 2009). Seamounts are also sites of 

geological hazards such as tsunamis through sector collapse during their growth stage (e.g., 

McMurtry et al., 2004). Upon subduction of the ocean floor, seamounts can also serve as 

prominent asperities generating earthquakes (e.g., Watts et al., 2010 for a recent review). As the 

subduction process can lead to crustal accretion of seamounts, they can be preserved in the 

accessible geological record, providing important insights from the evolution of hotspot tracks 

and continental margins to biological exchange between continents (e.g., Hoernle et al., 2002; 

Geldmacher et al., 2008; Portnyagin et al., 2008; Buchs et al., 2011; Safonova and Santosh, 

2013). Despite the manifold contributions of seamounts to the dynamics of diverse earth 

systems, their process of formation is still debated. Most commonly the occurrence of isolated 

volcanoes distant from plate boundaries is attributed to the upwelling of mantle plumes (e.g., 

Wilson, 1963; Morgan, 1971; Courtillot et al., 2003). The absence of linear volcanic chains and 

lack of spatially age progressive magmatism in many areas has stimulated a vigorous debate on 

the origin of intraplate volcanism (e.g., Anderson, 2000; Foulger and Natland, 2003; see also 

“Great Plume debate”, www.mantleplumes.org). Other important mechanisms of seamount 

formation include off-axis volcanism in the vicinity of spreading ridges by lateral expansion of 

the ridge melting regime (e.g., Batiza et al., 1990; Brandl et al., 2012 and references therein), 

recycling of delaminated continental lithosphere (Hoernle et al., 2011) and plate fracturing (e.g., 

Winterer and Sandwell, 1987; Natland and Winterer, 2005). In this paper, we report for the first 

time an integrated bathymetric, geochronological and geochemical data set from three seamount 

provinces off West Antarctica and show that these intraplate volcanoes are not directly linked to 
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the activity of a mantle plume but rather reflect remobilization and transfer of fertile mantle from 

beneath West Antarctica.  

The Marie Byrd Seamounts (MBS), located in the western Amundsen Sea north of the 

continental shelf of Marie Byrd Land, West Antarctica (Fig. 1), are a good example of enigmatic 

intraplate volcanism. They are located on oceanic crust possibly older than 72 Ma (Heinemann et 

al., 1999; Eagles et al., 2004a,b) and form an elongated cluster of volcanic edifices, that extends 

for more than 800 km between ~114° and ~131°W, and ~68° and ~71°S. Based on rock 

fragments found in corers and dredges carried out at a single MBS (Hubert Miller Seamount), 

Udintsev et al. (2007) assumed that this structure represents a relict fragment of continental crust 

which was destructed and altered by a mantle plume. The authors, however, admit that the 

material recovered cannot unambiguously be interpreted as in situ rocks. Although the MBS 

form a vast seamount province covering over 200,000 km
2
, their remote location made sampling 

difficult, inhibiting elucidation of their age, magma sources and volcanic evolution. Moreover, 

the relationship of the MBS to the magmatism associated with the final break-up of Gondwana 

and/or to the widespread but low volume intraplate volcanism in the SW Pacific region (e.g., 

Weaver et al., 1994; Storey et al., 1999; Rocchi et al., 2002a; Finn et al., 2005; Hoernle et al., 

2006; Hoernle et al., 2010; Timm et al., 2010) was poorly constrained.  

In 2006, the R/V POLARSTERN cruise ANT-XXIII/4 conducted a bathymetric mapping 

and dredge sampling survey of five MBS and associated structures. Samples from two other 

volcanic complexes in the Amundsen Sea, namely the previously studied ocean island volcano 

Peter I Island (e.g., Prestvik et al., 1990; Prestvik and Duncan, 1991; Hart et al., 1995) and the 

Belgica Seamount (De Gerlache Seamounts, Hagedorn et al., 2007) (Fig. 1), are included in our 

study to more fully characterize the sources and spatial evolution of intraplate magmatism in this 

region. Both Peter I Island and the De Gerlache Seamounts have been related to hotspot activity 

by most previous authors. 
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Here we present results of the bathymetric surveys together with 
40

Ar/
39

Ar ages and 

geochemical data (major and trace element and radiogenic Sr-Nd-Pb-Hf isotope ratios) of the 

recovered rocks. We show that magmatism in the Amundsen Sea occurred at distinct time 

intervals in spatially confined areas ruling out an origin through a single stationary hotspot. 

Notably this volcanism appears predominantly influenced by HIMU (high time-integrated 

238
U/

204
Pb) type mantle, requiring emplacement and upwelling of such material in the depleted 

upper oceanic mantle well after the breakup of Zealandia from Antarctica. After briefly 

summarizing the tectonic and magmatic evolution affecting this part of the SW Pacific over the 

past 100 Ma, we discuss our results and evaluate processes, which may cause non-hotspot related 

HIMU-type intraplate volcanism in the Amundsen Sea. 

 

2. Tectonic and magmatic evolution of the SW-Pacific over the past 100 Ma 

 

Plate-kinematic reconstructions (Fig. 2) demonstrate that Marie Byrd Land was attached 

to the southeastern margin of Zealandia prior to the final breakup of Gondwana (Fig. 2a; e.g., 

Eagles et al., 2004a). After the collision of the Hikurangi Plateau with the Gondwana margin 

(e.g., Davy et al., 2008; Hoernle et al., 2010) and cessation of subduction along the northern 

margin of Zealandia at c. 100 Ma (e.g., Weaver et al., 1994), extensional processes set in, 

causing Zealandia to rift from Marie Byrd Land (e.g., Larter et al., 2002; Eagles et al., 2004a; 

and Boger, 2011 for a recent review). The continental breakup initiated with the Chatham Rise 

separating from the Amundsen Sea Embayment sector during the Cretaceous Normal Polarity 

Superchron (CNS) at about 90 Ma (Fig. 2b). Thereafter the southwestward rift propagation 

jumped farther south and separated the Campbell Plateau from Marie Byrd Land just before 

chron C33 (83-79 Ma), leaving a rifted West Antarctic continental margin bordering the 

Amundsen Sea (Fig. 2c d; Larter et al., 2002; Eagles et al., 2004a).  
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During the late Cretaceous / Early Tertiary the southern Pacific region was sectioned into 

a minimum of three major tectonic plates (Bradshaw, 1989; Larter et al., 2002; Eagles et al., 

2004a; Wobbe et al., 2012), the Pacific Plate, the Bellingshausen Plate, and the Phoenix or Aluk 

Plate adjacent to the Antarctic Plate (Fig. 2e). While the Phoenix Plate subducted beneath the 

eastern portion of the Antarctic Plate, the other plate boundaries were divergent or transform 

margins. During C27 (61 Ma) the Bellingshausen Plate ceased from being a separate plate and 

became incorporated into the Antarctic Plate (Fig. 2f; Eagles et al., 2004a, b; Wobbe et al., 

2012). Heinemann et al. (1999) and Stock et al. (1997) suggest that the MBS province formed in 

the vicinity of the Antarctic-Pacific-Bellingshausen triple junction. Between C27 and C25/C24 

(57 - 54 Ma), a substantial drop in spreading rate occurred at the Pacific-Antarctic Ridge, and 

together with a gradual rotation of the spreading direction (Müller et al., 2000), an increase in 

fracture zone density is notable (Eagles et al., 2004a). At the same time, the West Antarctic Rift 

System (WARS) continued its crustal extension in Marie Byrd Land and possibly into the 

Amundsen Sea Embayment just south of the MBS (Gohl et al., 2013). The De Gerlache 

Seamounts and Peter I Island are aligned along the so-called De Gerlache Gravity Anomaly 

(DGGA) (Gohl et al., 1997a; McAdoo and Laxon, 1997; Hagedorn et al., 2007) (Fig. 2g+h) 

which was initially interpreted as a fracture zone of the earlier Phoenix-Antarctic Ridge (Hart et 

al., 1995). However, magnetic seafloor spreading data imply that this is a tectonic scar caused by 

a westward jump of the Pacific-Phoenix ridge at chron C27 (Larter et al., 2002; Eagles et al., 

2004a). Müller et al. (2007) suggested that this zone of possible lithospheric weakness was 

reactivated by a northward extension of a later WARS branch (Figs. 1 and 2h). 

The Late Cretaceous tectonic events were accompanied by intense volcanism in East 

Gondwana and Marie Byrd Land at c. 95-110 Ma (e.g., Hart et al., 1997; Storey et al., 1999). 

This magmatism has been related to large-scale mantle upwelling in conjunction with extension-

induced rifting (Finn et al., 2005). Others assume an active mantle plume in the area of the 

Bellingshausen-Amundsen Sea or beneath East Gondwana (Hole and Le Masurier, 1994; 
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Weaver et al., 1994; Rocholl et al., 1995; Hart et al., 1995, 1997; Panter et al., 2000; Hoernle et 

al., 2010; Sutherland et al., 2010), which may have caused the final break-up of Zealandia from 

Antarctica (e.g., Weaver et al., 1994; Storey et al., 1999; Hoernle et al., 2010). As the region 

underwent further plate reorganization, a second phase of volcanism occurred (Rocchi, 2002a,b; 

Nardini et al., 2009 and references therein, LeMasurier et al., 1990). This younger magmatism 

(30 - 25 Ma until recent) is mainly of alkaline nature and has been related to rifting and crustal 

extension associated with the WARS. Based on a HIMU (high time-integrated U/Pb) component 

found in many WARS volcanics, many authors suggest reactivation of old plume material 

embedded at the base of the continental lithosphere (e.g., Weaver et al., 1994) others favor a 

metasomatic origin (e.g., Nardini et al., 2009). 

 

3. Bathymetry and Morphology of Marie Byrd Seamounts and Peter I island 

 

During cruise ANT-XXIII/4, the Atlas Hydrosweep DS-2 multi-beam echo-sounding 

system of onboard the R/V Polarstern was used to generate maps of five MBS (summarized in 

Table 1; Fig. 3a) and of the submarine base of Peter I Island (Gohl, 2007). Combined with 

bathymetric data of previous cruises (RV Nathaniel B. Palmer in 1996, RV Polarstern ANT-XI/3 

in 1994, and ANT-XVIII/5a in 2001; e.g., Miller and Grobe, 1996; Feldberg, 1997), these data 

reveal that the MBS are characterized by steep sides with relatively flat tops and additional small 

cones on the upper flanks and/or on the platforms. The guyot-like morphology of the main 

edifices is attributed to seamount growth above sea level to form ocean island volcanoes, which 

subsequently eroded to sea level and then subsided to their present position. The small cones 

must have formed after subsidence of the erosional platforms below wave base and therefore 

represent a late stage or post-erosional phase of volcanism. 

The westernmost studied seamount, Seamount 6 (informal name), has an elongate WNW-

ESE striking base (Fig. 3b). The steep-sided edifice is topped by a flat plateau, on which several 
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well-preserved small volcanic cones are scattered, rising up to 200 m above the plateau. 

Seamount 9 (informal name) is located about 45 km east of Seamount 6. One track was surveyed 

across Seamount 9 (not shown in Fig. 3), which revealed an oval shaped guyot and a c. 10 km 

long WNW-ESE-trending ridge emanating from its western base. This ridge is composed of 

several aligned small volcanic cones and interpreted as volcanic rift zone. Haxby Seamount 

(named by the ANT-XIII/4 cruise participants) (Fig. 3c), which has been mapped previously on 

RV Nathaniel B. Palmer Cruise in 1996 (Feldberg, 1997), has a slightly curvilinear volcanic rift 

system with numerous cones on its top emanating from the eastern flank of the guyot and 

extending > 30 km to the east. Two less pronounced, c. 12 - 15 km long chains of cones and 

ridges emanating from the western flank may be the western continuation of the volcanic rift. 

Hubert Miller Seamount (Fig. 3d) is located  75 km ESE of Haxby Seamount. This seamount is 

the largest MBS with frequent small cones and ridges scattered along its flanks but infrequent on 

the plateau. Several up to 8 km long volcanic rift zones extend from the base of Hubert Miller 

Seamount. The easternmost mapped seamount, Seamount C (informal name; Fig. 3e), is the 

smallest of the studied volcanoes. Its guyot-shaped edifice has a crudely circular base and a 

plateau of 7 km diameter. Volcanic rifts extend from the base in northern and southern 

directions and NNE-SSW trending, curvilinear graben and ridge structures are adjacent to its 

eastern flank. The existence of further, most likely sediment covered, volcanic cones and ridge-

like basement structures between the main MBS cluster and Marie Byrd Land are predicted from 

satellite gravity data (Smith and Sandwell, 1997) and observed in seismic data (Gohl et al., 

1997b; Uenzelmann-Neben and Gohl, 2012). The original volume of MBS magmatism, 

however, remains unclear because of incomplete data and the largely unknown initial volume of 

the eroded islands. Based on the available bathymetric data (multi-beam and satellite gravity), 

the total volume of all present MBS can roughly be estimated to more than 20,000 km
3
. The 

aerial extent of the former Marie Byrd islands were similar in size to Canary Islands, such as La 
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Palma (compared to Hubert Miller Seamount) or El Hierro (compared to Seamount 6), which are 

believed to be the product of a mantle plume (e.g., Montelli et al., 2006).  

The submarine base of Peter I Island was only partially surveyed prior to ANT-XXIII/4 

and, except for dredge hauls directly off the coast of the island (Broch, 1927), un-sampled (Fig. 

4). The island is elongated in N-S direction and represents the top of a large volcano, which 

measures 65 km in diameter at its base and rises from the abyssal plain at  3,500 - 4,000 m to 

an elevation of 1,640 m above sea level. Volcanic rifts emanate from the submarine flank of the 

island mainly in northern and southern directions. A striking feature of Peter I Island is a c. 9 km 

wide depression in the eastern flank of its base, which most likely has been formed by a major 

slope failure or sector collapse. 

 

4. Sample Background 

 

Volcanic rocks were recovered at five dredge stations of the main MBS edifices and 

associated small cones (Fig. 3b-e). In addition a single dredge haul along the northeastern 

submarine flank of Peter I Island has been carried out (Fig. 4). At all dredge sites discussed here, 

the angular shape of the rocks, freshly broken surfaces and homogeneity of rock types within a 

single dredge were taken as evidence for an in-situ origin (and non-ice rafted) of the rocks. Our 

samples represent the first in-situ volcanic rocks recovered from the MBS. A detailed description 

of dredge operations and recovered material is provided in chapter 7 of Gohl (2007). 

At Haxby Seamount, dredge haul PS69-317-1 from the upper southern slope beneath the 

plateau edge contained freshly broken carbonate cemented breccias, which consist of aphyric 

basaltic clasts up to 8 cm in size (Fig. 5a). At Hubert Miller Seamount, three dredges yielded 

mainly lava fragments; dredge PS69-321-1 along a steep slope below the SE plateau edge gave 

olivine (ol)- clinopyroxene (cpx)-phyric lava Fig. 5b, dredge PS69-324-1 at the lower SE slope 

beneath a cone like structure provided dense feldspar (fsp)-cpx-phyric basalt lava and 
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(carbonate) cemented Mn-encrusted volcanic breccia, and dredge PS69-325-1 obtained vesicular 

fsp-phyric lava from the upper southern flank. At Seamount C, vesicular ol-fsp-phyric and dense 

fsp-phyric pillow fragments (Fig. 5c) were dredged from a cone on the lower western flank.  

At Peter I Island, a 150 m high ridge located in  1,800 m water depth on the NE slope of 

the volcano was dredged (PS69-244-1). The rocks are predominantly vesicular pillow and sheet 

flow lava fragments (Fig. 5d). Both are feldspar (fsp)-phyric and have up to 1 cm thick, fresh, 

glassy rims. Vesicles are generally unfilled and only a few glassy surfaces show early stages of 

palagonitization. The subaerial samples from Peter I Island were taken at the Michajlovodden 

peninsula (Fig. 4). They comprise vesicular lava (up to 15% vesicles; sample PI-1), aphyric 

agglutinates of a > 1.5 m thick, partially red oxidized layer outcropping in the northern part of 

the peninsula (sample PI-3), and part of a reddish volcanic bomb with 10- 20 % vesicles (sample 

PI-4). 

Belgica Seamount is the easternmost edifice of the De Gerlache Seamount group. It is 

guyot-shaped and has a N-S elongated base diameter of c. 60 x 90 km with a flat-topped summit 

at c. 400 - 500 m below sea level. Belgica was dredge-sampled during Polarstern cruise 

ANTXII-4 in 800 to 600 water depths (Hagedorn et al., 2007). Hagedorn et al. (2007) initially 

determined K-Ar ages and major and trace element geochemistry on the recovered samples. Here 

we complement the existing data with Sr-Nd-Pb isotope data on a subset of newly prepared 

sample material. 

 

5. Petrography and Rock Classification 

 

The petrography of the MBS volcanics is quite uniform being slightly phyric with a few 

large phenocrysts of altered olivine and zoned plagioclase in a fine-grained groundmass of 

olivine, plagioclase and clinopyroxene. Occasionally, ilmenite and magnetite occur as accessory 

phases. Olivine is commonly altered to iddingsite and the latter is sometimes replaced by calcite. 
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The groundmass is variably altered by low temperature processes ranging from hydrated glass at 

Haxby Seamount to replacement by secondary minerals such as zeolite and dolomite at Hubert 

Miller Seamount and Seamount C. The altered state of the MBS volcanic rocks is also 

manifested in elevated H2O contents of up to 2 wt% in most samples, except that samples from 

Dredge 324 at Hubert Miller Seamount have <1 wt% H2O and those from Seamount C have 3 

wt% H2O (Table 2). CO2 contents are generally low (< 0.3 wt%) and only two samples show 

slightly elevated CO2 > 0.5 wt%, due to secondary carbonate. Unusually high phosphorous 

contents were detected in 5 samples (marked with 
b
 in Table 2) and are interpreted to reflect the 

presence of secondary phosphate that is, however, not detected in thin section. Only samples 

with P2O5 ≤ 1 wt% are considered meaningful when treating the major element chemistry further 

below. 

The submarine samples of Peter I Island are slightly porphyric with zoned plagioclase 

laths and small, homogeneously distributed clinopyroxene phenocrysts, set in a microcrystalline 

groundmass of clinopyroxene and plagioclase. Magnetite occurs as an accessory mineral and 

fresh glass is common. The subaerial volcanics of Peter I Island are more aphyric than those 

from the submarine flanks. The fine-grained crystalline groundmass of these samples contains 

pyroxene, plagioclase and possibly glass, and accessory minerals of magnetite, ilmenite and 

hematite. All samples from Peter I Island are generally very fresh as manifested by low H2O 

(0.3-0.9 wt%) and CO2 (< 0.06wt%) contents (Table 2).  

The silica content of the entire sample suite ranges from 53.1 to 45.7 wt% SiO2. On a 

total alkali vs. silica diagram (TAS; Fig. 6), the majority of the samples plots above the alkalic – 

subalkalic division line and are classified as basalts, trachybasalts and basaltic trachyandesites. 

All but one of MBS samples lie along an alkali basaltic differentiation trend. The samples from 

the submarine flank of Peter I Island are tholeiitic basalts (SiO2 ~ 49 wt%; Na2O+K2O 4.1 - 4.3 

wt%), whereas the subaerial samples are slightly more alkaline transitional tholeiites (SiO2 ~ 47 

wt%; Na2O+K2O 4.3 - 4.5 wt%).  
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6. Analytical results 

  

6.1. 
40

Ar/
39

Ar age dating 

 

The 
40

Ar/
39

Ar age dating results are summarized in Table 3. Age and alteration index 

spectra  are shown in Figure 7. A 

detailed description of the methods and the full analytical data are provided in Appendix 1.
 

Glasses from two hyaloclastite breccia samples at Haxby Seamount yield plateau ages of 

64.2 ± 0.9 Ma (317-1-1gls) and of 62.3 ± 0.4 (317-1-2gls) and 61.2 ± 0.5 Ma (317-1-2gl2), 

slightly outside of the two sigma analytical errors. Alteration indices are relatively high even in 

the plateau sections (0.001 to 0.01), reflecting partial hydration of the basalt glass and uptake of 

atmospheric 
36

Ar.  

Three samples of porphyric lava from Hubert Miller Seamount yield plagioclase step-

heating plateau ages of 56.7 ± 1.9 Ma (321-1-2), 56.5 ± 0.6 Ma (325-1-2B) and 57.0 ± 0.9 Ma 

(321-1-5). Alteration indices are high in the low-temperature heating steps indicating partial 

alteration of the feldspars, but systematically low in the plateau steps (< 0.0002) indicating 

degassing from little or un-altered sites. Matrix step-heating analyses from the same rock 

samples yield plateau age results within error of the feldspar step-heating results (321-1-2: 58.9 ± 

0.6 Ma; 321-1-5: 55.7 ± 0.5 Ma), but are considered inferior with respect to scatter and alteration 

effects.  

The matrix step-heating analysis of aphyric basalt lava sample 324-1-3, in contrast, yields 

a plateau age of 3.0 ± 0.5 Ma. Alteration indices are high in the plateau section (0.003 to 0.01), 

possibly indicating a partial loss of radiogenic 
40

Ar. Nevertheless, the analysis shows that Hubert 

Miller Seamount comprises both Paleocene and Pliocene lavas. 
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The least-altered aphyric lava sample from Seamount “C” (327-1-2) yields a low-

probability plateau age of 58.7 ± 0.8 Ma, with intermediate plateau-step alteration indices (0.002 

to 0.008). Fresh basaltic glass from Peter I Seamount yields plateau steps alteration indices 

<0.0009 (244-1-1) and <0.0001 (244-1-3), and plateau ages of 1.9 ± 0.3 Ma, 1.7 ± 0.3 Ma 

respectively. 

 

6.2. Major and trace elements 

 

A total of 19 samples from the MBS and Peter I Island were analyzed for major and trace 

elements compositions and the results are shown in Table 2. Descriptions of methods and 

uncertainties are given in Appendix 1. A full table with sample locations, radiometric ages and 

geochemical data is provided in Table A4 of the Appendix. The majority of MBS samples are 

fairly evolved (8 to 2 wt% MgO), whereas samples from Peter I Island are more primitive and 

cluster between 8 and 10 wt% MgO. Al2O3 shows a good negative correlation with decreasing 

MgO, suggesting fractionation of pyroxene and olivine. In the most evolved MBS lavas (<3 wt% 

MgO), FeOt and TiO2 significantly decrease which may reflect fractionation of ilmenite in late 

stage melts. Subaerial and submarine samples of Peter I Island exhibit small compositional 

differences. The submarine samples have higher SiO2 and Al2O3 and slightly lower MgO, FeOt 

and TiO2 contents than the subaerial samples.  

Trace elements patterns of the MBS are typical for ocean islands basalts (OIB; Fig. 8a) 

with characteristic troughs for Pb and K and strong enrichments for Nb and Ta relative to 

primitive mantle. The Nb and Ta enrichments are most pronounced in samples from Hubert 

Miller Seamount while Haxby Seamount and Seamount C are less enriched in the most 

incompatible elements (Rb, Ba and Th). All MBS samples show strong enrichment of the light 

REE (LREE) relative to the heavy REE (HREE) (see Fig 8c), suggesting small degrees of partial 
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melting while differentiation of the HREE indicates melting within the garnet stability field (>70 

– 80 km).

The new trace element data from Peter I Island also display trace element patterns similar 

to OIB (Fig. 8b) that compares well with the data of Prestvik et al. (1990) and Hart et al. (1995). 

Overall the subaerial samples are slightly more enriched in incompatible elements than the 

submarine sample but show similar HREE abundances (Fig. 8d), which is consistent with lower 

degrees of melting for the subaerial lavas. In contrast to the MBS, Peter I Island samples are 

slightly less enriched in LREE and the most incompatible elements (Rb through Ta) and show 

lower La/Sm ratios (Fig. 9a), indicating higher degrees of partial melting than observed for the 

MBS. Notably the LREE are more strongly enriched relative to the HREE through a more 

pronounced HREE depletion. The higher (Sm/Yb)n ratios of the Peter I Island melts suggest that 

their source had a higher garnet content (Fig. 9b).  

 

6.3. Sr-Nd-Pb-Hf isotopes 

 

Sr-Nd-Pb-Hf isotopic ratios of representative samples from the MBS, Belgica Seamount, 

and Peter I Island are shown in Table 4. Descriptions of analytical methods and accuracy along 

with initial isotopic ratios are given in Appendix 1 and Table A4. Figures 10 and 11 compare the 

new MBS, Peter I Island and Belgica Seamount isotope data with data of West Antarctic 

volcanic rocks, related to the WARS (for data sources see figure captions) and the Hikurangi 

Seamounts (Hoernle et al., 2010). Excluding two samples with anomalously high 
87

Sr/
86

Sr 

isotope ratios that may have been affected by seawater alteration, the MBS samples form a crude 

negative array on the Sr-Nd isotope diagram (Fig. 10). The samples from Seamount C have the 

most radiogenic Nd and least radiogenic Sr isotope ratios and fall between Pacific MORB and 

the high 
238

U/
204

Pb (HIMU) mantle endmember. Samples from Hubert Miller Seamount have the 

least radiogenic Nd isotope ratios and trend vaguely towards an enriched mantle (EM) type 
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component (Fig. 10). The Belgica samples plot within the Pacific MORB field and the Peter I 

Island samples lie within the published field for this island (Prestvik et al., 1990; Hart et al., 

1995) and are displaced to slightly more radiogenic Sr and less radiogenic Nd isotope ratios i.e. 

to faintly more EM flavored compositions than the majority of Hubert Miller Seamount samples. 

In Pb-Pb isotope space (Fig. 11a), the MBS volcanic rocks do not form a simple two component 

mixing array as the majority of samples extends from a HIMU-type component with radiogenic 

Pb towards enriched mantle one (EMI) while two samples having significantly lower 
207

Pb/
204

Pb 

which displaces them towards the extension of the Pacific MORB field. Sample 324-1-4 from 

Hubert Miller Seamount has the least radiogenic Pb composition of all MBS and plots above the 

Pacific MORB field away from the main MBS array while samples from Haxby Seamount 

possess the most radiogenic Pb composition. The Belgica Seamount samples plot near the 

unradiogenic end of the main MBS field in Pb-Pb isotope space (Fig. 11a) but possess more 

radiogenic 
143

Nd/
144

Nd compositions than the MBS (Fig. 11b). The majority of MBS samples 

and all Belgica Seamount samples largely overlap with the fields of the West Antarctic volcanics 

and the Hikurangi Seamounts (Fig. 11). The Peter I Island samples overlap the published data 

from this island and have Pb isotope compositions near the enriched mantle two (EMII) 

component. 

The above mixing relations are also seen in co-variations of 
206

Pb/
204

Pb versus 

143
Nd/

144
Nd (Fig. 11b) and Nd versus Hf (Fig. 12). On the Pb vs Nd isotope diagram, it is clear 

that at least three distinct components are required in the source of the MBS seamounts. Haxby 

Seamount has radiogenic Pb and intermediate Nd isotope ratios, similar to the HIMU mantle 

endmember. Seamount C and two Hubert Miller Seamount samples have less radiogenic Pb and 

intermediate Nd, trending toward Pacific MORB (or depleted mantle = DM). The remaining 

Hubert Miller seamount samples except sample 324-1-4 have radiogenic Pb but the least 

radiogenic Nd, so that they are somewhat displaced toward EM like compositions. On the Nd-Hf 

isotope diagram, the MBS seamounts show a relatively restricted range in Nd but a large range in 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

16 

 

Hf isotope ratios that fall between Pacific MORB (DM) and the HIMU and EM mantle 

endmembers. The Belgica Seamount samples have the most MORB-like compositions in Nd, but 

their 
206

Pb/
204

Pb isotopic compositions are more radiogenic than commonly found in MORB. 

The Peter I Island samples have a clear EMII-type isotope signal with respect to Pb while Sr, Nd 

and Hf isotopes are just EM indicative. 

 

7. Discussion 

 

7.1. Spatial distribution of Cenozoic volcanism in the Amundsen Sea and Bellingshausen Sea 

 

40
Ar/

39
Ar dating of six samples from the MBS yielded Early Cenozoic ages ranging from 

64 to 57 Ma. A clear spatial age progression between the three dated MBS is not observed. The 

oldest ages are from Haxby Seamount in the west (64-61 Ma) and clearly younger ages are from 

Hubert Miller Seamount to the east (57 Ma, three feldspar ages). Seamount C, the easternmost 

seamount, yielded an intermediate age (59 Ma), but this matrix age with a very low probability 

should be treated with caution. The Pliocene age of 3.0 ± 0.5 Ma determined for sample 324-1-3 

was collected right beneath a small volcanic cone along the upper slope of Hubert Miller 

Seamount (Fig. 3d) and most likely represents the age of this cone. Similar cones are scattered 

on the plateau and slopes of all mapped MBS (cf. Fig. 3), indicating widespread and possibly 

long-lasting low volume post-erosional volcanism, as has been observed at other seamount 

provinces worldwide (e.g., Geldmacher et al., 2005; Hoernle et al., 2004, 2010).  

Assuming that the 
40

Ar/
39

Ar ages obtained at the three MBS are close (within a few 

million years) to the time when these islands were eroded and submerged below sea-level, a 

minimum subsidence rate can be calculated for each seamount taking the age and present water 

depth of the plateau of the seamount into account. Seamount C, the smallest and deepest edifice, 

displays the highest subsidence rate of ~ 41 m/Ma if it is actually a guyot. In contrast, the larger 
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Haxby and Hubert Miller Seamounts both yield minimum subsidence rates of ~ 28 m/Ma despite 

their apparent age difference of ~ 5 Ma. We note that the plateau edges of the westernmost 

Seamounts 6 and 9 lie at roughly similar water depth (1,600 – 1,350 m, Tab. 1) as observed for 

Haxby and Hubert Miller Seamounts (1,800 – 1,200 m), which in turn may indicate a 

comparable subsidence history provided similarities in lithospheric age and structure west of 

Haxby Seamount as well as analogous formation ages of 60 ± 5 Ma.  

The new ages (1.9  0.3 Ma to 1.7 ± 0.3 Ma) for samples from the eastern submarine 

flank of Peter I Island are significantly older than earlier published K-Ar ages (327 ± 88 ka to 

111 ± 36 ka [1 sigma errors], Prestvik and Duncan, 1991) obtained on subaerial samples, which 

suggests that the fresh pillow glasses belong to an earlier submarine phase of this volcano.  

Together with published Upper Miocene K-Ar ages for the Belgica Seamount (20 - 23 

Ma, Hagedorn et al., 2007), the three seamount / ocean island volcanic provinces of the 

Amundsen and Bellingshausen Sea appear to have formed at distinct age intervals of 64 - 57 Ma 

for the MBS, at ~22 Ma for the De Gerlache Seamounts and at least since ~2 Ma at Peter I 

Island. The three seamount / ocean island groups are spatially arranged in a highly elongated 

triangle with the MBS lying at its western tip and the De Gerlache Seamounts and Peter I Island 

forming the eastern limit (Fig. 1). The age distribution neither shows a correlation with spatial 

distribution nor a correlation with the age of the underlying ocean crust (e.g., Eagles et al., 

2004a). A relationship between ages and plate motion cannot be observed, because neither the 

relative motion between the Bellingshausen Plate and the Antarctic Plate nor the absolute plate 

motion of the Antarctic Plate was significant for this time period (Eagles et al., 2004a, b; Wobbe 

et al., 2012; Doubrovine et al., 2012). 

Therefore the irregular spatial distribution of seamount ages in the Amundsen Sea and 

Bellingshausen Sea indicates that this magmatism occurred at distinct time intervals in spatially 

confined areas. This observation excludes an origin through a single stationary hotspot sensu 

Morgan (1971). Instead this regional age pattern of intraplate volcanism favors the presence of 
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three melting anomalies independent in space and time. Before we explore possibilities of non-

plume related intraplate volcanism, we will first briefly reiterate geochemical constraints on the 

origin of the magma sources. 

 

7.2. Geochemical constraints on the origin of seamount magmatism 

 

Lavas of all three seamount provinces (MBS, De Gerlache and Peter I Island) display a 

strong enrichment of the LREE relative to the HREE (Fig. 8c+d), clearly indicating partial 

melting in the presence of garnet. Likewise (Sm/Yb)N, (Gd/Yb)N and (Dy/Yb)N are all > 1 which, 

is consistent with residual garnet in the source (cf. Fig. 9b). Furthermore, the slight enrichment 

of Zr relative to Hf on the mantle-normalized plot (Fig. 8a + b) is also consistent with residual 

garnet (Hauri et al., 1994). Consequently melt segregation in all three areas must have occurred 

in the garnet stability field > 60 - 80 km or 40-50 km if garnet pyroxenite was in the source 

(Hirschmann and Stolper, 1996). High Zr/Hf (43 - 54, (Fig. 9b), Nb/Ta (16 - 19) and low Zr/Sm 

(31 - 38) provide additional support for partial melting of eclogite/garnet pyroxenite (i.e. 

recycled ocean crust), rather than garnet peridotite, consistent with a HIMU component in the 

mantle source.  

The isotopic signatures of MBS volcanic rocks are consistent with the presence of a 

HIMU-type mantle component in the source of these rocks (Figs. 10 - 12). The extremely 

radiogenic 
206

Pb/
204

Pb of the HIMU-endmember requires a high 
238

U/
204

Pb in the source; a 

component unlikely to develop in significant amounts within the convecting upper oceanic 

mantle without crustal recycling (see Stracke, 2012 for a recent review). HIMU is classically 

thought to reflect deep mantle recycling of oceanic crust by mantle plumes, ascending from deep 

in the mantle (Hofmann and White, 1982; White, 2010), however, from the lack of clear 

indications for the long-term existence of a classical mantle plume in the Amundsen Sea it is 

clear that alternative mechanisms are required to explain the occurrence of HIMU type intraplate 
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volcanism in this area, as has also been proposed for HIMU-type volcanic rocks in New Zealand 

(Hoernle et al., 2006). 

Subaerial and submarine samples of Peter I Island exhibit small compositional 

differences with the submarine samples having higher SiO2 and Al2O3 and slightly lower MgO, 

FeOt and TiO2 contents than the subaerial samples. The slight differences in MgO, FeOt, Al2O3 

and TiO2 between submarine and subaerial lavas could be related through fractionation of 

olivine, pyroxene and possibly ilmenite from a subaerial melt composition, but this scenario 

cannot explain the higher incompatible element abundances in the subaerial lavas. Along with 

the slightly more alkaline character of the subaerial lavas in our sample set, the data indicates 

that the subaerial lavas could reflect slightly lower degrees of mantle melting, which would also 

explain their higher incompatible element abundances. Variations in the extent of partial melting 

are common during the life cycle of ocean island volcanoes with more alkaline compositions of 

lavas during the subaerial stage compared to less alkaline (tholeiitic) compositions during the 

submarine shield stage (e.g., Frey et al., 1990). Even during the submarine stage, short-term 

variations in the degree of partial melting have been observed at Loihi Seamount in the Hawaiian 

Islands (Garcia et al., 1993). 

The Pb isotopic composition of lavas from Peter I Island carry a clear EM II source 

signal (Fig. 11a) that is commonly thought to reflect contributions from pelagic sediments or 

upper continental crust (e.g., Zindler and Hart, 1986; Willbold and Stracke, 2010). The mafic 

composition of Peter I Island lavas, negative Pb anomalies and high Ce/Pb (~25 in submarine 

samples, 34-40 in subaerial samples) argue against shallow AFC processes such as sediment 

assimilation or preferred leaching of sedimentary Pb. This conclusion is similar to that of Hart et 

al. (1995), who explain the high 
207

Pb/
204

Pb signature of Peter I Island melts as evidence for the 

involvement of a mantle plume with EM II characteristics. We also note that the majority of 

global pelagic sediments have lower 
206

Pb/
204

Pb and 
207

Pb/
204

Pb ratios than observed in the Peter 

I Island lavas and thus involvement of modern pelagic sediment seems less likely. This is 
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consistent with the Hf-Nd isotope ratios, which show that marine sediments did not influence the 

submarine sample of Peter I Island (Fig. 12). Ce/Pb lying within (or slightly above) the canonical 

array of 25±5 for global OIB and MORB (after Hofmann et al., 1986) provides additional 

evidence for derivation from oceanic mantle rather than involvement of continental crust, which 

has Ce/Pb of 3-5. The solitary location of Peter I Island suggests that magmatism is related to a 

localized upwelling of EMII-like mantle but it is unclear whether this is connected to a blob 

rising from a thermal boundary such as the SW Pacific superswell or melting of a continental raft 

that drifted into the oceanic upper mantle during the final Gondwana breakup.  

In summary, Cenozoic intraplate volcanism in the Amundsen Sea and Bellingshausen 

Sea requires involvement of depleted MORB mantle in the source with significant contributions 

of enriched components of HIMU and EM affinity. Due to the lack of clear evidence for the 

existence of a mantle plume in this region, a model is needed to explain the evidence for 

enriched (“plume like”) components in the source of Amundsen Sea intraplate volcanism and a 

non-plume related process to accomplish adiabatic mantle melting in an intraplate environment.  

 

7.3. Origin of the HIMU component in non-hotspot related Southwest-Pacific and Antarctic 

volcanic provinces 

 

Alkalic volcanism with HIMU-like incompatible-element and isotopic signatures, similar 

to the samples from MBS, is reported from numerous locations throughout the SW Pacific and 

West Antarctica. These include the Chatham Rise, Hikurangi Seamounts, intraplate volcanic 

fields in New Zealand, sub-Antarctic islands and West Antarctica (e.g., Baker et al., 1994; Hart, 

1997; Weaver and Pankhurst, 1991; Weaver at al., 1994; Rocholl et al., 1995; Tappenden, 2003; 

Panter et al., 2000, 2006; Nardini et al., 2009; Hoernle et al., 2010). In all these localities, 

volcanic centers are diffusely distributed and do not show any age progression relative to plate 

motion. Most commonly, models suggest localized extension/upwelling of asthenosphere that 
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induces melting of metasomatized lithosphere in thin spots to produce the diffuse alkaline 

magmatism.  

Finn et al. (2005) postulate a “diffuse alkaline magmatic province (DAMP)”, which 

formed without any rifting or plume upwelling. They temporally extend the DAMP into the 

Cenozoic and explain this magmatism by detachment of subducted slabs from the base of 

Gondwana lithosphere in the late Cretaceous. The sinking of material into the mantle is thought 

to have introduced Rayleigh Taylor instabilities along the Gondwana margin and activated 

lateral and vertical flow of warm Pacific mantle. After Finn et al. (2005) the interaction of the 

warm mantle with metasomatized lithosphere generated the HIMU geochemical characteristics 

of the DAMP. A shortcoming of this model is, however, that Finn et al. (2005) had to focus their 

study on old, continental fragments of East Gondwana, and could not include oceanic 

occurrences like the MBS, the De Gerlache Seamounts or the Hikurangi Seamounts which are 

situated on top of Hikurangi Plateau off New Zealand. An important difference between the 

seamounts and the continental alkaline provinces is that the majority of seamount provinces 

formed on relatively young oceanic crust. While HIMU signatures can be found in old 

continental terranes, HIMU-type volcanism in the oceans either requires rise of HIMU material 

from depth or some sort of refertilization of the upper mantle, especially when required shortly 

after ocean crust formation. No doubt, small-scale heterogeneities exist in the upper mantle away 

from mantle plumes as is evident from small off-axis seamounts that often have more enriched 

element and isotopic signatures than associated MORB (e.g., Brandl et al., 2012 and references 

therein). It seems, however, unlikely that such small-scale heterogeneities are present shortly 

after formation of the ocean crust to an extent that can explain the c. 1000-8000 km
3
 of enriched 

melt required to form individual MBS (see Table 1 for volume estimates). In other words, even if 

Raleigh Taylor instabilities affected the Gondwana margin it seems unlikely that upwelling of 

regular Pacific upper mantle that underwent high degrees of melting shortly before can serve as 

the source of the HIMU-type compositions without refertilization. 
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Alternatively the superplume beneath the SW-Pacific could have supplied a dense swarm 

of widely distributed and contemporaneously active secondary plumes causing diffuse alkaline 

volcanism (Suetsugu et al., 2009). Since it is in principle possible that secondary plumelets or 

blobs are continuously rising from the SW Pacific superswell (presumed to have stalled at the 

660 km transition zone; Courtillot et al., 2003) they may also serve as the cause of volcanism 

forming the MBS and De Gerlache Seamounts. The age-distance relationship between MBS and 

the much further north located Pacific Superswell is, however, unclear. Alternatively Timm et al. 

(2010 and references therein) identify a low velocity anomaly extending from Chatham Rise off 

New Zealand to western Antarctica in at 600 - 1500km depth and suggest that this could be the 

HIMU source polluting the upper mantle in this area since Cretaceous. Still it appears accidental 

that only the Marie Byrd Land margin was hit by a short-lived swarm of plumelets and no other 

oceanic region above this low velocity zone. Therefore we explore an alternative scenario for the 

oceanic seamount provinces off Marie Byrd Land based on reactivation of (HIMU) material, 

added to the base of continental lithosphere by plume activity during the pre-rifting stage of 

Marie Byrd Land/Zealandia.  

On a regional scale, the MBS and Belgica Seamount data overlap with the data field of 

the Hikurangi Seamounts (Hoernle et al., 2010) in most isotope correlation diagrams (Fig. 10 - 

12). A similar HIMU signature of Cretaceous rocks is also found at the Mandamus complex, the 

Lookout Volcanics in southern New Zealand, and the Chatham Islands (Weaver and Pankhurst, 

1991; Tappenden, 2003; Panter et al., 2006; McCoy-West et al., 2010). During the Cretaceous 

these localities were assembled adjacent to Marie Byrd Land. It has been proposed that a HIMU 

type plume or plume head may have caused breakup of the Gondwana margin in this region 

(e.g., Weaver et al., 1994; Hart et al., 1997; Storey et al., 1999; Hoernle et al., 2010). This plume 

event may have also influenced the source characteristics of the Hikurangi Seamounts (Hoernle 

et al., 2010) and may have been accompanied by large scale underplating of the Zealandia 

continental lithosphere by HIMU material (e.g. Weaver et al., 1994; Hart et al., 1997; Panter et 
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al., 2000) (Fig. 13). During the mid Cretaceous the plume head expanded and thus forced rifting 

and the breakup of Gondwana as it impacted at the base of the continental lithosphere (Weaver et 

al., 1994). We note, however, that in contrast to other continental breakup related mantle plumes 

such as the Tristan-Gough in the South-Atlantic (and related Paraná and Entendeka continental 

flood basalts), a flood basalt event is absent on Zealandia and West Antarctica, possibly 

reflecting the convergent margin setting and associated thick continental lithosphere along the 

Gondwana margin. Together with the observation that the Cretaceous HIMU volcanism occurred 

only locally and was of relatively low volume, it seems likely that unmelted HIMU-mantle got 

attached at the base the Gondwana lithosphere, which underwent extension and rifting during 

that period. The proposed large-scale underplating of HIMU material beneath East Gondwana is 

consistent with the HIMU signature of many Cenozoic continental volcanics from West 

Antarctica (e.g., Hobbs Coast, Marie Byrd Land Volcanic Province, WARS; cf. Figs. 10 and 11). 

Accordingly, many authors relate the Cenozoic HIMU similarities in West Antarctica to the 

reactivation of HIMU material, added to the base of the continental lithosphere during the 

earliest pre-rifting stage of the Marie Byrd Land through plume activity (e.g., Weaver et al., 

1994; Rocholl et al., 1995; Hart et al., 1997; Panter et al., 2000). Alternatively Nardini et al. 

(2009 and references therein) call upon a late Cretaceous metasomatic event that caused variable 

elevation of U/Pb ratios in the sublithospheric mantle to an extend that explains the high 

206
Pb/

204
Pb of < 20Ma WARS volcanics and generation of their HIMU isotopic source signatures 

through radiogenic ingrowth over extremely short time scales. The regional context, however, 

requires the presence of a HIMU component that is already present in the Cretaceous, so that the 

metasomatic model of Nardini et al. (2009) for the formation of HIMU appears less likely. 

Notably, the field for continental volcanic rocks of West Antarctica overlaps the data of 

the oceanic seamount provinces (Hikurangi Seamounts, MBS, De Gerlache) (Figs. 10 and 11), 

which have been formed close to the East Gondwana and West Antarctic margin, respectively. 

The samples also fall within the range of Cretaceous volcanic rocks of southern New Zealand, 
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suggesting that all the above-mentioned volcanic suites originate from a similar HIMU source. 

This material may therefore also represent reactivation of fossil Cretaceous plume material that 

was originally attached to the base of the continental lithosphere during Marie Byrd 

Land/Zealandia break up. In contrast to the above mentioned onshore occurrences of Cenozoic 

HIMU volcanism, an additional transport mechanism and mode of reactivation is required to 

explain the marine equivalents of HIMU volcanism, because this material needs first of all be 

transferred into the oceanic mantle beneath the newly formed ocean basins of the Amundsen / 

Bellingshausen Sea followed by decompression melting (see section 7.4 for details). 

Admittedly the arguments for an initial upwelling of plume-like material and storage at 

the base of the Gondwana lithosphere are solely based on geochemistry, which points to a HIMU 

like mantle. Such a source is unlikely to develop in situ in a mantle region affected by long-term 

subduction zone volcanism and small scale convection cells operating within the mantle wedge 

both leading to continuous depletion and replenishment of the arc mantle. On the other hand, 

upwelling of refertilized subcontinental lithospheric mantle (SCLM), isolated from mantle 

circulation for several billion years, can lead to the formation of EM type melts (e.g., Rudnick, 

1995; Griffin et al., 2009; Hoernle et al., 2011; Soager et al., 2013). Ancient SCLM, however, 

features low 
206

Pb/
204

Pb and 
143

Nd/
144

Nd along with high 
207

Pb/
204

Pb and 
87

Sr/
86

Sr ratios, 

reflecting an ancient source that evolved with low U/Pb, Sm/Nd but high Rb/Sr (see Tang et al., 

2013 for a recent review). Mantle regions that underwent such a fractionation and/or 

metasomatic event early in the earth’s history are commonly thought to be involved in the 

formation of the early continental crust, having resided thereafter in the roots of stable Achaean 

cratons. In conclusion, SCLM seems to be a very unlikely candidate as source of the Cretaceous 

HIMU type intraplate volcanism due the conflicting isotopic composition of SCLM (EM-like) 

and the long-term subduction zone setting of this area. Therefore our preferred model for the 

origin of the HIMU component in the MBS and De Gerlache lavas is reactivation of fossil 
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Cretaceous plume material, which was attached and stored at the base of the West Antarctic 

continental lithosphere during East Gondwana breakup. 

 

7.4 Model for the formation of the Marie Byrd Seamounts 

 

In the case of the West Antarctic volcanoes, underplated HIMU material may have been 

reactivated and caused to upwell during the WARS extension (e.g., Hart et al., 1997). For the 

formation of the c. 99 to 67 Ma Hikurangi Seamounts, Hoernle et al. (2010) propose the rise of 

HIMU-type material directly beneath the Hikurangi Plateau - a ~118 Ma oceanic LIP (Hoernle et 

al., 2010) that formed in connection with the Manihiki (Timm et al., 2011) and possibly the 

Ontong Java plateaus (Taylor, 2006), through deflection of rising plume material beneath 

Zealandia by the subducting plate towards the Hikurangi plateau, which was about to collide 

with the Zealandia margin at that time (Fig. 13a+b). For the MBS and De Gerlache Seamounts, 

however, a mechanism is required that enables lateral transport of the earlier emplaced HIMU 

material under Marie Byrd Land beneath the newly formed bordering oceanic lithosphere. 

When the new oceanic crust of the Amundsen Sea formed, Zealandia (including the 

Hikurangi plateau) rifted away from Marie Byrd Land in a northward direction (Fig. 13c), 

whereas the West Antarctic continental margin remained more or less fixed and developed as a 

relatively stable passive margin thereafter (e.g., Eagles et al. 2004a; Wobbe et al., 2012). Mutter 

et al. (1988) proposed a transition zone directly at the edge of thicker to thinner lithosphere 

where small convective flow is focused. In case of the MBS and De Gerlache Seamounts, the 

transition zone lies at the edge of the Antarctic continental lithosphere and the beginning of the 

adjacent oceanic crust. Several mechanisms such as edge-driven convection (EDC), small-scale 

convection (SSC) or shear-driven upwelling (SDU) have been suggested to explain edge-driven 

buoyant flow between young, thin and old, thicker lithosphere (e.g., King and Anderson, 1995, 

1998; King and Ritsema, 2000; Huang et al., 2003; Dumoulin et al., 2008; Conrad et al., 2010 
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and references therein). For example, (super-) continents may effectively insulate the upper 

mantle, leading to a buildup of heat (Gurnis et al., 1998; Anderson, 1994; Lowman and Jarvis, 

1995, 1996). These lateral temperature differences between the warm mantle beneath the 

continental lithosphere and normal upper mantle can drive an upper mantle convective flow 

pattern that leads to upwelling beneath the continent-ocean transition zone (Fig. 13d), the so-

called “continental-insulation flow” (e.g., King and Anderson, 1995, 1998). From numerical 

modeling, King and Anderson (1998) suggest that lateral variations in temperature of at least 

30°C are required for continental insulation flow to significantly modify or even shut off the 

normal, downwelling EDC flow. Higher temperature anomalies (150 - 200°C) would drive major 

upper mantle convection cells. In case of the Cretaceous East Gondwana lithosphere, the impact 

of the hot plume head may have caused additional heating of the mantle beneath the continental 

lithosphere and therefore reinforced the lateral variations in mantle temperature and 

consequently mantle convection. Notably, the pattern of flow resulting from continental 

insulation is opposite to that of normal EDC flow (King and Anderson, 1995, 1998). At the 

initial stages of rifting of a continent, upwelling should occur as warm mantle from beneath the 

continent that occupies the space created by spreading between the continental masses. At the 

Late Cretaceous Marie Byrd Land margin, this process would transfer mantle material directly 

from beneath the continent into the upper mantle under the adjacent oceanic lithosphere on 

which the MBS started to form at that time (Fig. 13d). Therefore we consider continental 

insulation flow as the most plausible mechanism to bring the HIMU plume-like material 

previously attached beneath Marie Byrd Land upwards beneath the adjacent oceanic lithosphere 

of the Bellingshausen / Antarctic plate.  

As the HIMU material was transported upwards beneath the newly formed oceanic 

lithosphere from beneath the thick Antarctica continental crust, the material will melt by 

decompression. The volcanism forming the De Gerlache Seamounts at ~22 Ma and the 

Pleistocene activity of Peter I Island, on the other hand, was most likely related to the De 
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Gerlache Gravity Anomaly (Figs. 1 and 2), which represents a zone of lithospheric weakness 

resulting from a presumed WARS activity in this region (Müller et al., 2007), where pre-existing 

N-S striking faults allowed rise (and decompression melting) of HIMU type material brought up 

beneath the oceanic lithosphere by mantle convection. The formation of the MBS may therefore 

have been triggered by a complex sequence of plate reorganization events that affected the West 

Antarctic margin and the Bellingshausen Plate in Late Cretaceous and Early Cenozoic (e.g., 

Eagles et al., 2004a; Wobbe et al., 2012). Shortly before the Bellingshausen Plate became 

incorporated into the Antarctic Plate at 61 Ma (Eagles et al., 2004a, b; Wobbe et al., 2012), a 

change in rotation of the Bellingshausen Plate from counterclockwise to clockwise was 

accompanied by lithospheric extension on its southern margin between 74 and 62 Ma (Wobbe et 

al., 2012). Contemporaneously the MBS started to form in that area (Fig. 2) (Fig 13 d), 

suggesting that lithospheric extension lead to upwelling of sublithospherically attached HIMU 

material and deep reaching faults that allowed rise of the HIMU type melts and formation of 

large volcanic islands (Fig. 13d). 

 

8. Conclusions 

 

Our new morphological, geochronological, and geochemical data for the MBS combined 

with additional data for the De Gerlache and Peter I Island volcanic complexes (complementing 

previously published data) permit for the first time a comprehensive reconstruction of the origin 

and evolution of Cenozoic intraplate volcanism in the Amundsen Sea. The most important 

results are: 

(1) Intraplate volcanism occurred during the entire Cenozoic at distinct time intervals in 

spatially confined areas in the Amundsen Sea, excluding an origin of this volcanism by a single 

stationary hotspot.  
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(2) The MBS and De Gerlache Seamount lavas show OIB signatures and posses a distinct 

HIMU component in their magma source similar to Late Cretaceous – Cenozoic volcanics of the 

Hikurangi Seamounts off New Zealand, intraplate volcanic fields in New Zealand, sub Antarctic 

islands and the WARS, suggesting a common mantle source for these volcanic provinces. 

(3) Peter I Island displays a strong EM affinity probably caused by shallow mantle 

recycling of a continental fragment. 

Consequently, the formation of the MBS and De Gerlache Seamounts intraplate 

volcanism requires an alternative, non-hotspot scenario, which takes distinct melting anomalies 

independent in space and time and a non-hotspot related HIMU source into account.  

Placing the morphological, geochronological, and geochemical data in a regional plate 

tectonic context, we conclude that the most plausible explanation for the HIMU type intraplate 

volcanism in the Amundsen Sea is reactivation of HIMU-material, added to the base of the 

Antarctic lithosphere by a Late Cretaceous plume event. Major tectonic events, namely the 

separation of Zealandia from Antarctica during the final stage of the Gondwana break-up and 

subsequent formation of ocean crust give way for transport of the sublithospheric HIMU material 

beneath the Amundsen Sea oceanic crust by continental insulation flow. Extension caused by 

plate tectonic reorganization (MBS) and/or lithospheric weakening underneath the De Gerlache 

Gravity Anomaly (De Gerlache, Peter I Island) allow rise and adiabatic melting of the HIMU 

material resulting in the formation of these volcanic edifices. Reactivation of the MBS 

magmatism resulting in Pliocene low volume volcanism and the Pleistocene formation of Peter I 

Island document ongoing magmatism in the Amundsen Sea. 

The new model for the Amundsen Sea volcanism presented here adds to case examples 

for non-hotspot intraplate volcanism and provides additional evidence that HIMU-type intraplate 

volcanism is not necessarily a direct consequence of an actively upwelling, stationary mantle 

plume or hotspot. 
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FIGURE CAPTIONS 

 

Fig. 1: Overview map of West Antarctica and the Amundsen Sea. The three seamount/ocean 

island volcanic provinces of the Amundsen Sea are marked by yellow circles. Dashed red lines 

indicate major tectonic lineaments (WARS - West Antarctic Rift System from Müller et al. 

(2007); DGGA - De Gerlache Gravity Anomaly). The map is based on the GEBCO_08 Grid 

(version 20091120, http://www.gebco.net). 

 

Fig. 2: Plate-tectonic reconstruction from 100 Ma to 22 Ma, using rotation parameters by Eagles 

et al. (2004a). Illustrated are the collision of Hikurangi Plateau with Zealandia at around 100 Ma, 

the breakup between Zealandia and West Antarctica at 90-80 Ma, the development of the 

Bellingshausen Plate and the subsequent volcanism along the West Antarctic margin. Double 

lines mark spreading ridge plate boundaries, single solid lines mark other plate boundaries types, 

hashed lines in West Antarctica illustrate lineaments of the West Antarctic Rift System (Eagles 

et al., 2009; Gohl et al., 2013). Abbreviations are: SNS South Island New Zealand, HIK 
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Hikurangi Plateau, CP Campbell Plateau, CR Chatham Rise, GSB Great South Basin, BS 

Bollons Seamount, BT Bounty Trough, WA West Antarctica, MBL Marie Byrd Land, AP 

Antarctic Peninsula, ASE Amundsen Sea Embayment, WARS West Antarctic Rift System, PAC 

Pacific Plate, PHO Phoenix Plate, BP Bellingshausen Plate, MBS Marie Byrd Seamounts (red 

area marks volcanic activity of the shield phase), DGS De Gerlache Seamounts, PI Peter I Island, 

DGGA De Gerlache Gravity Anomaly (suture of former PHO-BP ridge jump). 

 

Fig. 3: (a) Overview of the Marie Byrd Seamount Province. Red arrows mark the MBS surveyed 

during R/V Polarstern cruise ANT-XXIII/4 in 2006, letters in bold signify those which have been 

successfully dredged. Predicted bathymetry after Smith and Sandwell (1997). (b) Multi-beam 

bathymetry of the eastern part of Seamount 6. This is the westernmost studied during ANT-

XXIII/4 and has not been mapped before. It appears to be one of the largest MBS. (c) Haxby 

Seamount (named by the ANT-XIII/4 cruise participants) has completely been mapped on the 

R/V N.B. Palmer cruise in 1996 and morphologically studied in detail by Feldberg (1997). (d) 

Combined ANT-XVIII/5a (2001) and ANT-XXIII/4 multi-beam bathymetry of Hubert Miller 

Seamount. This Seamount is located ~40 nm ESE of Haxby and appears to be the largest of the 

MBS. (e) Combined ANT-XVI/3 (Miller and Grobe, 1996) and ANT-XXIII/4 multi-beam 

bathymetry of Seamount C. This seamount does not appear in the bathymetric maps derived 

from satellite gravity data. Note that Seamount C differs in size, high, and morphology from the 

other surveyed MBS guyots. The red dots with numbers mark dredge station of cruise ANT-

XXIII/4 which yielded in situ volcanic rocks. 

 

Fig. 4: Multi-beam bathymetry of the base of Peter I Island. The map reveals several small cone- 

and ridge-like structures on its flanks and a steep canyon at its eastern side which most likely has 

been formed by slope failure or sector collapse. The red dots indicate locations sampled during 
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cruise during R/V Polarstern cruise ANT-XXIII/4 in 2006 (244 - dredge station at the eastern 

base of Peter I Island; PI 1-4 - subaerial samples taken on Michajlovodden peninsula). 

 

Fig. 5: Basaltic rocks dredged at the MBS and the submarine base of Peter I Island; (a) Typical 

monomict breccia from Haxby Seamount composed of dense, aphyric irregular-shaped and 

angular coarse lapilli set in a carbonaceous matrix (PS69/317-1); (b) dense ol-cpx-phyric basaltic 

lava fragment from Hubert Miller Seamount, note angularity and freshly broken surfaces of the 

sample (PS69/321-1); (c) dense fsp-phyric pillow fragment of Seamount C (PS69/327-1); (d) 

sheet lava flow fragment with fresh, 1 cm thick glassy rim from the submarine base of Peter I 

Island (PS69/244-1). 

 

Fig. 6: Total alkali versus SiO2 diagram illustrating the alkali basaltic to basaltic trachyandesitic 

composition of most samples from MBS, Peter I Island, and De Gerlache Seamounts. 

Subdivision between alkalic and subalkaline rock suites after Irvine and Baragar (1971). All data 

are normalized to a 100% volatile free basis. Samples displaying unusual high phosphor contents 

are not shown in this diagram (cf. Table 2). Tb - Trachybasalt. 

 

Fig. 7: Age spectra and alteration indices (A.I.) from 
40

Ar/
39

Ar laser step-heating experiments. 

Plateau steps and corresponding range of alteration index values are accentuated by grey 

shading. Stated errors are ±2σ. 

 

Fig. 8: Multi-element diagram normalized to primitive mantle after Hofmann (1988) for (a) 

MBS and (b) Peter I Island samples. The trace elements patterns of the all samples are similar to 

those of ocean islands basalts (OIB). OIB and E-MORB pattern after Sun and McDonough 

(1989). REE diagrams normalized to C1 after McDonough and Sun (1995) for c) MBS and d) 

Peter I Island samples.  
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Fig. 9: (Sm/Yb)n (n= normalized to primitive mantle after Hofmann, 1988) versus (a) La/Sm 

and (b) Zr/Hf ratios. Lower La/Sm ratios indicate slightly higher degrees of partial melting for 

Peter I Island and Belgica Seamount than for MBS. Residual garnet and pyroxene and/or eclogite 

in the magma source is indicated by high (Sm/Yb)n ratios of 2 to 8 and relatively high Zr/Hf 

ratios (> 40), respectively. Zr/Hf ratios for depleted MORB mantle (32 - 40) after Salters and 

Stracke (2004) and Workman and Hart (2005). 

 

Fig. 10: 
87

Sr/
86

Sr versus 
143

Nd/
144

Nd isotope correlation diagram for MBS, Peter I Island, and 

Belgica Seamount samples. The field for West Antarctic volcanics is defined by data of the 

WARS (Rocholl et al., 1995; Rocchi et al., 2002a), the Jones Mountains in Ellsworth Land (Hart 

et al., 1995), and the Marie Byrd Land Volcanic Province (Hart et al., 1997; Panter et al., 1997, 

2000), which extends along the Pacific margin of Marie Byrd Land. Most authors consider the 

volcanism at the Marie Byrd Land Volcanic Province and Jones Mountains as related to the 

WARS (e.g., Hart et al., 1995, 1997; Panter et al., 2000). The field for the Hikurangi Seamounts 

is based on data by Hoernle et al. (2010), published data for Peter I Island comprise analyses of 

subaerial basaltic lavas from Prestvik et al. (1990) and Hart et al. (1995). The field for 

Cretaceous volcanics of New Zealand are based on Tappenden (2003); Panter et al. (2006) and 

McCoy-West et al. (2010).  HIMU, EM I, and EM II after Zindler and Hart (1986) and Hart et al. 

(1992). Fields for Pacific MORB are from PetDB (http://www.earthchem.org/petdb) based on 

analyses of fresh glass. 

 

Fig. 11: (a) 
206

Pb/
204

Pb versus 
207

Pb/
204

Pb, and (b) 
143

Nd/
144

Nd isotope correlation diagrams for 

MBS, Peter I Island, and Belgica Seamount samples. Symbols and data sources as in Figure 10.  
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Fig. 12: Nd versus Hf isotope correlation diagram for MBS and Peter I Island samples. Figure 

modified after Geldmacher et al. (2003), symbols and data sources for Hikurangi Seamounts and 

Pacific MORB as in Figure 10. The New Zealand Cretaceous field includes Nd values by 

Tappenden (2003) and Hf values analyzed by Timm et al. (2010) for the Mandamus Complex, as 

well as data from McCoy-West et al. (2010) for Lookout Volcanics.  

 

Fig. 13: Schematic sketch placing the origin of the MBS in a regional geodynamic context. (a) 

During the final stage of subduction of the Pacific Plate beneath the Zealandia/West Antarctic 

Gondwana margin, the Hikurangi Plateau approaches the subduction zone. (b) Forces acting 

upon the plate margin as, for example, the collision of the Hikurangi Plateau with Zealandia 

(e.g., Bradshaw, 1989, Davy et al., 2008) cause cessation of subduction and slab detachment. 

The impact of a plumehead at that time was accompanied by large scale underplating of HIMU 

material beneath East Gondwana (e.g., Weaver et al., 1994; Hart et al., 1997) and the Hikurangi 

Plateau (possibly by deflection of the plume material by the subducting plate; Hoernle et al., 

2010), triggering volcanism on West Antarctica and Zealandia and the formation of the 

Hikurangi Seamounts. (c) After subduction ended extensional processes set in, causing the 

break-up of Zealandia from Marie Byrd Land at ~90 Ma and subsequent rifting, forming the 

oceanic crust of the Amundsen Sea (Eagles et al., 2004a). (d) Lateral temperature differences 

between warm mantle beneath the continental lithosphere and normal upper mantle drove 

continental-insulation flow (model modified after King and Anderson, 1995), allowing sub-

continental mantle material to rise into the upper mantle beneath the adjacent oceanic 

lithosphere. At the Cretaceous/Tertiary boundary lithospheric extension at the southern margin 

of the Bellingshausen Plate (e.g., Wobbe et al., 2012) formed deep reaching faults that allowed 

rise of plume type melts and formation of the MBS from a magma source similar to that of the 

Hikurangi Seamounts and the West-Antarctic/Zealandia volcanoes. For further details and 

references see text.
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Highlights 

Marie Byrd Seamounts (MBS) formed off Antarctica at 65-56 Ma in an extensional regime 

MBS originate from HIMU-type mantle attached at the base of the Antarctic lithosphere 

Continental insulation flow transferred HIMU mantle into the oceanic mantle 


