151 research outputs found

    Raman Spectroscopic Analysis of Geological and Biogeological Specimens of Relevance to the ExoMars Mission

    Get PDF
    H.G.M.E., I.H., and R.I. acknowledge the support of the STFC Research Council in the UK ExoMars programme. J.J. and P.V. acknowledge the support of the Grant Agency of the Czech Republic (210/10/0467) and of the Ministry of Education of the Czech Republic (MSM0021620855).Peer reviewedPublisher PD

    Detection of reduced carbon in a basalt analogue for martian nakhlite : a signpost to habitat on Mars

    Get PDF
    C. W. Taylor and J. Still are thanked for skilled technical support. J. Parnell, H.G.M. Edwards, I. Hutchinson and R. Ingley acknowledge the support of the UKSA and the STFC Research Council in the UK ExoMars programme. L. V. Harris and S. McMahon acknowledge STFC studentship funding.Peer reviewedPublisher PD

    Neural correlates of abnormal sensory discrimination in laryngeal dystonia

    Get PDF
    AbstractAberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD), who exhibited different clinical phenotypes (adductor vs. abductor forms) and potentially different genotypes (sporadic vs. familial forms). We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder

    Design, development, and scientific performance of the Raman Laser Spectrometer EQM on the 2020 ExoMars (ESA) Mission

    Get PDF
    The Raman Laser Spectrometer (RLS) is one of the three Pasteur Payload instruments located within the rover analytical laboratory drawer (ALD), for ESA’s Aurora exploration programme, ExoMars 2020 mission. The instrument will analyse the crushed surface and subsurface samples that are positioned below the Raman optical head by the ALD carousel. The RLS engineering and qualification model (EQM) was delivered to ESA at the end of 2017, after a wide technical and scientific test characterization campaign. The scientific campaign comprised instrument calibration and detailed evaluation of the scientific requirements and overall performance. For spectral calibration, continuous emission standard lamps (such as Hg-Ar, Ne, and Xe) were utilized, as well as Raman spectra of pure liquids typically used as standards (cyclohexane and carbon tetrachloride (CCl4)). In addition, Raman spectra of the RLS calibration target (CT), a small disc of polyethylene terephthalate (PET) were obtained at various temperatures. This target, placed inside the rover, will be used for both Instrument health checks and calibration activities throughout Mars operations. For the scientific requirements and performance evaluations, several liquid and solid samples were analysed under a wide range of ambient conditions. The obtained spectral band parameters (peak position, relative peak intensity, peak width, and peak profile) were evaluated. Also, the instrument response (in terms of SNR) was characterized at different integration times and detector operating temperatures. In this paper, we provide a description of the development, verification, functional test, and overall scientific performance of the RLS instrument developed for ExoMars. Particular attention is placed on the performance of the EQM, which is the most representative instrument, in terms of engineering and functionality, of the flight model (FM) and in addition is used for performing all the mechanical, thermal, and radiation tests necessary for space qualification (for planetary applications). The data presented and analysed here, comprise part of the overall dataset obtained during the full instrument characterization campaign conducted at INTA before and during delivery and integration of the EQM in the rover ALD at TAS-I facilities (Torino, Italy). The results obtained confirm that the full functionality and scientific performance of the RLS instrument was maintained after integration.Proyecto MINECO Retos de la Sociedad. Ref. ESP2017-87690-C3-1-

    Targeting patient recovery priorities in degenerative cervical myelopathy:design and rationale for the RECEDE-Myelopathy trial-study protocol

    Get PDF
    Introduction: Degenerative cervical myelopathy (DCM) is a common and disabling condition of symptomatic cervical spinal cord compression secondary to degenerative changes in spinal structures leading to a mechanical stress injury of the spinal cord. RECEDE-Myelopathy aims to test the disease-modulating activity of the phosphodiesterase 3/phosphodiesterase 4 inhibitor Ibudilast as an adjuvant to surgical decompression in DCM. Methods and analysis: RECEDE-Myelopathy is a multicentre, double-blind, randomised, placebo-controlled trial. Participants will be randomised to receive either 60-100 mg Ibudilast or placebo starting within 10 weeks prior to surgery and continuing for 24 weeks after surgery for a maximum of 34 weeks. Adults with DCM, who have a modified Japanese Orthopaedic Association (mJOA) score 8-14 inclusive and are scheduled for their first decompressive surgery are eligible for inclusion. The coprimary endpoints are pain measured on a visual analogue scale and physical function measured by the mJOA score at 6 months after surgery. Clinical assessments will be undertaken preoperatively, postoperatively and 3, 6 and 12 months after surgery. We hypothesise that adjuvant therapy with Ibudilast leads to a meaningful and additional improvement in either pain or function, as compared with standard routine care. Study design: Clinical trial protocol V.2.2 October 2020. Ethics and dissemination: Ethical approval has been obtained from HRA - Wales. The results will be presented at an international and national scientific conferences and in a peer-reviewed journals.Trial registration number: ISRCTN Number: ISRCTN16682024.</p

    Raman analysis of a shocked planetary surface analogue: Implications for habitability on Mars

    Get PDF
    The scientific aims of the ExoMars Raman laser spectrometer (RLS) include identifying biological signatures and evidence of mineralogical processes associated with life. The RLS instrument was optimised to identify carbonaceous material, including reduced carbon. Previous studies suggest that reduced carbon on the Martian surface (perhaps originating from past meteoric bombardment) could provide a feedstock for microbial life. Therefore, its origin, form, and thermal history could greatly inform our understanding of Mars' past habitability. Here, we report on the Raman analysis of a Nakhla meteorite analogue (containing carbonaceous material) that was subjected to shock through projectile impact to simulate the effect of meteorite impact. The characterisation was performed using the RLS Simulator, in an equivalent manner to that planned for ExoMars operations. The spectra obtained verify that the flight-representative system can detect reduced carbon in the basaltic sample, discerning between materials that have experienced different levels of thermal processing due to impact shock levels. Furthermore, carbon signatures acquired from the cratered material show an increase in molecular disorder (and we note that this effect will be more evident at higher levels of thermal maturity). This is likely to result from intense shearing forces, suggesting that shock forces within basaltic material may produce more reactive carbon. This result has implications for potential (past) Martian habitability because impacted, reduced carbon may become more biologically accessible. The data presented suggest the RLS instrument will be able to characterise the contribution of impact shock within the landing site region, enhancing our ability to assess habitability

    Geological repositories: scientific priorities and potential high-technology transfer from the space and physics sectors

    Get PDF
    The use of underground geological repositories, such as in radioactive waste disposal (RWD) and in carbon capture (widely known as Carbon Capture and Storage; CCS), constitutes a key environmental priority for the 21st century. Based on the identification of key scientific questions relating to the geophysics, geochemistry and geobiology of geodisposal of wastes, this paper describes the possibility of technology transfer from high-technology areas of the space exploration sector, including astrobiology, planetary sciences, astronomy, and also particle and nuclear physics, into geodisposal. Synergies exist between high technology used in the space sector and in the characterization of underground environments such as repositories, because of common objectives with respect to instrument miniaturization, low power requirements, durability under extreme conditions (in temperature and mechanical loads) and operation in remote or otherwise difficult to access environments

    The Sloan Digital Sky Survey Reverberation Mapping Project: Hα and HÎČ reverberation measurements from first-year spectroscopy and photometry

    Get PDF
    Funding: UK Sciences and Technology Facilities Council STFC grant ST/M001296/1 (KH).We present reverberation mapping results from the first year of combined spectroscopic and photometric observations of the Sloan Digital Sky Survey Reverberation Mapping Project. We successfully recover reverberation time delays between the g+i band emission and the broad HÎČ emission line for a total of 44 quasars, and for the broad Hα emission line in 18 quasars. Time delays are computed using the JAVELIN and CREAM software and the traditional interpolated cross-correlation function (ICCF): using well-defined criteria, we report measurements of 32 HÎČ and 13 Hα lags with JAVELIN, 42 HÎČ and 17 Hα lags with CREAM, and 16 HÎČ and eight Hα lags with the ICCF. Lag values are generally consistent among the three methods, though we typically measure smaller uncertainties with JAVELIN and CREAM than with the ICCF, given the more physically motivated light curve interpolation and more robust statistical modeling of the former two methods. The median redshift of our HÎČ-detected sample of quasars is 0.53, significantly higher than that of the previous reverberation mapping sample. We find that in most objects, the time delay of the Hα emission is consistent with or slightly longer than that of HÎČ. We measure black hole masses using our measured time delays and line widths for these quasars. These black hole mass measurements are mostly consistent with expectations based on the local – relationship, and are also consistent with single-epoch black hole mass measurements. This work increases the current sample size of reverberation-mapped active galaxies by about two-thirds and represents the first large sample of reverberation mapping observations beyond the local universe (z < 0.3).PostprintPeer reviewe

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected
    • 

    corecore