171 research outputs found

    An iterative consensus-building approach to revising a genetics/genomics competency framework for nurse education in the UK.

    Get PDF
    AIM: To report a review of a genetics education framework using a consensus approach to agree on a contemporary and comprehensive revised framework. BACKGROUND: Advances in genomic health care have been significant since the first genetics education framework for nurses was developed in 2003. These, coupled with developments in policy and international efforts to promote nursing competence in genetics, indicated that review was timely. DESIGN: A structured, iterative, primarily qualitative approach, based on a nominal group technique. METHOD: A meeting convened in 2010 involved stakeholders in UK nursing education, practice and management, including patient representatives (n = 30). A consensus approach was used to solicit participants' views on the individual/family needs identified from real-life stories of people affected by genetic conditions and the nurses' knowledge, skills and attitudes needed to meet those needs. Five groups considered the stories in iterative rounds, reviewing comments from previous groups. Omissions and deficiencies were identified by mapping resulting themes to the original framework. Anonymous voting captured views. Educators at a second meeting developed learning outcomes for the final framework. FINDINGS: Deficiencies in relation to Advocacy, Information management and Ongoing care were identified. All competencies of the original framework were revised, adding an eighth competency to make explicit the need for ongoing care of the individual/family. CONCLUSION: Modifications to the framework reflect individual/family needs and are relevant to the nursing role. The approach promoted engagement in a complex issue and provides a framework to guide nurse education in genetics/genomics; however, nursing leadership is crucial to successful implementation

    Bridging consent: from toll bridges to lift bridges?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to share human biological samples, associated data and results across disease-specific and population-based human research biobanks is becoming increasingly important for research into disease development and translation. Although informed consent often does not anticipate such cross-domain sharing, it is important to examine its plausibility. The purpose of this study was to explore the feasibility of bridging consent between disease-specific and population-based research. Comparative analyses of 1) current ethical and legal frameworks governing consent and 2) informed consent models found in disease-specific and population-based research were conducted.</p> <p>Discussion</p> <p>Ethical and legal frameworks governing consent dissuade cross-domain data sharing. Paradoxically, analysis of consent models for disease-specific and population-based research reveals such a high degree of similarity that bridging consent could be possible if additional information regarding bridging was incorporated into consent forms. We submit that bridging of consent could be supported if current trends endorsing a new interpretation of consent are adopted. To illustrate this we sketch potential bridging consent scenarios.</p> <p>Summary</p> <p>A bridging consent, respectful of the spirit of initial consent, is feasible and would require only small changes to the content of consents currently being used. Under a bridging consent approach, the initial data and samples collection can serve an identified research project as well as contribute to the creation of a resource for a range of other projects.</p

    A common missense variant of <i>LILRB<sub>5</sub></i> is associated with statin intolerance and myalgia

    Get PDF
    Aims A genetic variant in LILRB5 (leukocyte immunoglobulin-like receptor subfamily-B) (rs12975366: T > C: Asp247Gly) has been reported to be associated with lower creatine phosphokinase (CK) and lactate dehydrogenase (LDH) levels. Both biomarkers are released from injured muscle tissue, making this variant a potential candidate for susceptibility to muscle-related symptoms. We examined the association of this variant with statin intolerance ascertained from electronic medical records in the GoDARTS study. Methods and results In the GoDARTS cohort, the LILRB5 Asp247 variant was associated with statin intolerance (SI) phenotypes; one defined as having raised CK and being non-adherent to therapy [odds ratio (OR) 1.81; 95% confidence interval (CI): 1.34–2.45] and the other as being intolerant to the lowest approved dose of a statin before being switched to two or more other statins (OR 1.36; 95% CI: 1.07–1.73). Those homozygous for Asp247 had increased odds of developing both definitions of intolerance. Importantly the second definition did not rely on CK elevations. These results were replicated in adjudicated cases of statin-induced myopathy in the PREDICTION-ADR consortium (OR1.48; 95% CI: 1.05–2.10) and for the development of myalgia in the JUPITER randomized clinical trial of rosuvastatin (OR1.35, 95% CI: 1.10–1.68). A meta-analysis across the studies showed a consistent association between Asp247Gly and outcomes associated with SI (OR1.34; 95% CI: 1.16–1.54). Conclusion This study presents a novel immunogenetic factor associated with statin intolerance, an important risk factor for cardiovascular outcomes. The results suggest that true statin-induced myalgia and non-specific myalgia are distinct, with a potential role for the immune system in their development. We identify a genetic group that is more likely to be intolerant to their statins

    The Human Skeletal Muscle Proteome Project:a reappraisal of the current literature

    Get PDF
    Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of 'sarcopenia', a condition that impairs mobility, challenges autonomy, and is a risk factor for mortality. The mechanisms leading to sarcopenia as well as myopathies are still little understood. The Human Skeletal Muscle Proteome Project was initiated with the aim to characterize muscle proteins and how they change with ageing and disease. We conducted an extensive review of the literature and analysed publically available protein databases. A systematic search of peer-reviewed studies was performed using PubMed. Search terms included 'human', 'skeletal muscle', 'proteome', 'proteomic(s)', and 'mass spectrometry', 'liquid chromatography-mass spectrometry (LC-MS/MS)'. A catalogue of 5431 non-redundant muscle proteins identified by mass spectrometry-based proteomics from 38 peer-reviewed scientific publications from 2002 to November 2015 was created. We also developed a nosology system for the classification of muscle proteins based on localization and function. Such inventory of proteins should serve as a useful background reference for future research on changes in muscle proteome assessed by quantitative mass spectrometry-based proteomic approaches that occur with ageing and diseases. This classification and compilation of the human skeletal muscle proteome can be used for the identification and quantification of proteins in skeletal muscle to discover new mechanisms for sarcopenia and specific muscle diseases that can be targeted for the prevention and treatment

    Pharmacogenomics of 17-alpha hydroxyprogesterone caproate for recurrent preterm birth: a case–control study

    Get PDF
    Objective: To compare maternal genotypes between women with and without significant prolongation of pregnancy in the setting of 17-alpha hydroxyprogesterone caproate (17-P) administration for the prevention of recurrent preterm birth (PTB). Design: Case–control. Setting: Three tertiary-care centres across the USA. Population: Women (n = 99) with ≥ 1 prior singleton spontaneous PTB, receiving 17-P. Methods: Women were classified as having successful prolongation of pregnancy during the 17-P treated pregnancy, in two ways: (1) Definition A: success/non-success based on difference in gestational age at delivery between 17-P-treated and untreated pregnancies (success: delivered ≥ 3 weeks later with 17-P) and (2) Definition B: success/non-success based on reaching term (success: delivered at term with 17-P). Main outcome measures: To assess genetic variation, all women underwent whole exome sequencing. Between-group sequence variation was analysed with the Variant Annotation, Analysis, and Search Tool (VAAST). Genes scored by VAAST with P < 0.05 were then analysed with two online tools: (1) Protein ANalysis THrough Evolutionary Relationships (PANTHER) and (2) Database for Annotation, Visualization, and Integrated Discovery (DAVID). Results: Using Definition A, there were 70 women with successful prolongation and 29 without; 1375 genes scored by VAAST had P < 0.05. Using Definition B, 47 women had successful prolongation and 52 did not; 1039 genes scored by VAAST had P < 0.05. PANTHER revealed key differences in gene ontology pathways. Many genes from definition A were classified as prematurity genes (P = 0.026), and those from definition B as pharmacogenetic genes (P = 0.0018); (P, non-significant after Bonferroni correction). Conclusion: A novel analytic approach revealed several genetic differences among women delivering early vs later with 17-P. Tweetable abstract: Several key genetic differences are present in women with recurrent preterm birth despite 17-P treatment

    Cancer Pharmacogenomics and Pharmacoepidemiology: Setting a Research Agenda to Accelerate Translation

    Get PDF
    Recent advances in genomic research have demonstrated a substantial role for genomic factors in predicting response to cancer therapies. Researchers in the fields of cancer pharmacogenomics and pharmacoepidemiology seek to understand why individuals respond differently to drug therapy, in terms of both adverse effects and treatment efficacy. To identify research priorities as well as the resources and infrastructure needed to advance these fields, the National Cancer Institute (NCI) sponsored a workshop titled “Cancer Pharmacogenomics: Setting a Research Agenda to Accelerate Translation” on July 21, 2009, in Bethesda, MD. In this commentary, we summarize and discuss five science-based recommendations and four infrastructure-based recommendations that were identified as a result of discussions held during this workshop. Key recommendations include 1) supporting the routine collection of germline and tumor biospecimens in NCI-sponsored clinical trials and in some observational and population-based studies; 2) incorporating pharmacogenomic markers into clinical trials; 3) addressing the ethical, legal, social, and biospecimen- and data-sharing implications of pharmacogenomic and pharmacoepidemiologic research; and 4) establishing partnerships across NCI, with other federal agencies, and with industry. Together, these recommendations will facilitate the discovery and validation of clinical, sociodemographic, lifestyle, and genomic markers related to cancer treatment response and adverse events, and they will improve both the speed and efficiency by which new pharmacogenomic and pharmacoepidemiologic information is translated into clinical practice
    corecore