114 research outputs found

    Cooperativity‐Driven Reactivity of a Dinuclear Copper Dimethylglyoxime Complex

    Get PDF
    In this report, we present the dinuclear copper(II) dimethylglyoxime (H2_2dmg) complex [Cu2_2(H2_2dmg)(Hdmg)(dmg)]+^+ (1), which, in contrast to its mononuclear analogue [Cu(Hdmg)2_2] (2), is subject to a cooperativity-driven hydrolysis. The combined Lewis acidity of both copper centers increases the electrophilicity of the carbon atom in the bridging μ2_2-O−N=C-group of H2_2dmg and thus, facilitates the nucleophilic attack of H2O. This hydrolysis yields butane-2,3-dione monoxime (3) and NH2_2OH that, depending on the solvent, is then either oxidized or reduced. In ethanol, NH2_2OH is reduced to NH4_4+^+, yielding acetaldehyde as the oxidation product. In contrast, in CH3_3CN, NH2_2OH is oxidized by CuII^{II} to form N2_2O and [Cu(CH3_3CN)4]+^+. Herein are presented the combined synthetic, theoretical, spectroscopic and spectrometric methods that indicate and establish the reaction pathway of this solvent-dependent reaction

    Planet Populations as a Function of Stellar Properties

    Full text link
    Exoplanets around different types of stars provide a window into the diverse environments in which planets form. This chapter describes the observed relations between exoplanet populations and stellar properties and how they connect to planet formation in protoplanetary disks. Giant planets occur more frequently around more metal-rich and more massive stars. These findings support the core accretion theory of planet formation, in which the cores of giant planets form more rapidly in more metal-rich and more massive protoplanetary disks. Smaller planets, those with sizes roughly between Earth and Neptune, exhibit different scaling relations with stellar properties. These planets are found around stars with a wide range of metallicities and occur more frequently around lower mass stars. This indicates that planet formation takes place in a wide range of environments, yet it is not clear why planets form more efficiently around low mass stars. Going forward, exoplanet surveys targeting M dwarfs will characterize the exoplanet population around the lowest mass stars. In combination with ongoing stellar characterization, this will help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet

    Медицинские и социальные аспекты коммерческого секса

    Get PDF
    Представлены демографические, медицинские, психологические и социальные характеристики женщин, оказывающих платные сексуальные услуги. Обсуждается проблема легализации и регламентации проституции в контексте профилактики инфекций, передающихся половым путем, и заражения ВИЧ.Demographic, medical, psychological and social characteristics of women rendering sexual services are described. The problem of legalization and regulation of prostitution in the context of prevention of sexually transmitted infections and HIV is discussed

    Paradoxical antidepressant effects of alcohol are related to acid sphingomyelinase and its control of sphingolipid homeostasis

    Get PDF
    Alcohol is a widely consumed drug that can lead to addiction and severe brain damage. However, alcohol is also used as self-medication for psychiatric problems, such as depression, frequently resulting in depression-alcoholism comorbidity. Here, we identify the first molecular mechanism for alcohol use with the goal to self-medicate and ameliorate the behavioral symptoms of a genetically induced innate depression. An induced over-expression of acid sphingomyelinase (ASM), as was observed in depressed patients, enhanced the consumption of alcohol in a mouse model of depression. ASM hyperactivity facilitates the establishment of the conditioned behavioral effects of alcohol, and thus drug memories. Opposite effects on drinking and alcohol reward learning were observed in animals with reduced ASM function. Importantly, free-choice alcohol drinking—but not forced alcohol exposure—reduces depression-like behavior selectively in depressed animals through the normalization of brain ASM activity. No such effects were observed in normal mice. ASM hyperactivity caused sphingolipid and subsequent monoamine transmitter hypo-activity in the brain. Free-choice alcohol drinking restores nucleus accumbens sphingolipid- and monoamine homeostasis selectively in depressed mice. A gene expression analysis suggested strong control of ASM on the expression of genes related to the regulation of pH, ion transmembrane transport, behavioral fear response, neuroprotection and neuropeptide signaling pathways. These findings suggest that the paradoxical antidepressant effects of alcohol in depressed organisms are mediated by ASM and its control of sphingolipid homeostasis. Both emerge as a new treatment target specifically for depression-induced alcoholism. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00401-016-1658-6) contains supplementary material, which is available to authorized users

    Non-randomized therapy trial to determine the safety and efficacy of heavy ion radiotherapy in patients with non-resectable osteosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. For effective treatment, local control of the tumor is absolutely critical, because the chances of long term survival are <10% and might effectively approach zero if a complete surgical resection of the tumor is not possible. Up to date there is no curative treatment protocol for patients with non-resectable osteosarcomas, who are excluded from current osteosarcoma trials, e.g. <it>EURAMOS1</it>. Local photon radiotherapy has previously been used in small series and in an uncontrolled, highly individualized fashion, which, however, documented that high dose radiotherapy can, in principle, be used to achieve local control. Generally the radiation dose that is necessary for a curative approach can hardly be achieved with conventional photon radiotherapy in patients with non-resectable tumors that are usually located near radiosensitive critical organs such as the brain, the spine or the pelvis. In these cases particle Radiotherapy (proton therapy (PT)/heavy ion therapy (HIT) may offer a promising new alternative. Moreover, compared with photons, heavy ion beams provide a higher physical selectivity because of their finite depth coverage in tissue. They achieve a higher relative biological effectiveness. Phase I/II dose escalation studies of HIT in adults with non-resectable bone and soft tissue sarcomas have already shown favorable results.</p> <p>Methods/Design</p> <p>This is a monocenter, single-arm study for patients ≥ 6 years of age with non-resectable osteosarcoma. Desired target dose is 60-66 Cobalt Gray Equivalent (Gy E) with 45 Gy PT (proton therapy) and a carbon ion boost of 15-21 GyE. Weekly fractionation of 5-6 × 3 Gy E is used. PT/HIT will be administered exclusively at the Ion Radiotherapy Center in Heidelberg. Furthermore, FDG-PET imaging characteristics of non-resectable osteosarcoma before and after PT/HIT will be investigated prospectively. Systemic disease before and after PT/HIT is targeted by standard chemotherapy protocols and is not part of this trial.</p> <p>Discussion</p> <p>The primary objectives of this trial are the determination of feasibility and toxicity of HIT. Secondary objectives are tumor response, disease free survival and overall survival. The aim is to improve outcome for patients with non-resectable osteosarcoma.</p> <p>Trail Registration</p> <p>Registration number (ClinicalTrials.gov): NCT01005043</p

    Tolerability of inhaled N-chlorotaurine in the pig model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>N-chlorotaurine, a long-lived oxidant produced by human leukocytes, can be applied in human medicine as an endogenous antiseptic. Its antimicrobial activity can be enhanced by ammonium chloride. This study was designed to evaluate the tolerability of inhaled N-chlorotaurine (NCT) in the pig model.</p> <p>Methods</p> <p>Anesthetized pigs inhaled test solutions of 1% (55 mM) NCT (n = 7), 5% NCT (n = 6), or 1% NCT plus 1% ammonium chloride (NH<sub>4</sub>Cl) (n = 6), and 0.9% saline solution as a control (n = 7), respectively. Applications with 5 ml each were performed hourly within four hours. Lung function, haemodynamics, and pharmacokinetics were monitored. Bronchial lavage samples for captive bubble surfactometry and lung samples for histology and electron microscopy were removed.</p> <p>Results</p> <p>Arterial pressure of oxygen (PaO<sub>2</sub>) decreased significantly over the observation period of 4 hours in all animals. Compared to saline, 1% NCT + 1% NH<sub>4</sub>Cl led to significantly lower PaO<sub>2 </sub>values at the endpoint after 4 hours (62 ± 9.6 mmHg vs. 76 ± 9.2 mmHg, p = 0.014) with a corresponding increase in alveolo-arterial difference of oxygen partial pressure (AaDO<sub>2</sub>) (p = 0.004). Interestingly, AaDO<sub>2 </sub>was lowest with 1% NCT, even lower than with saline (p = 0.016). The increase of pulmonary artery pressure (PAP) over the observation period was smallest with 1% NCT without difference to controls (p = 0.91), and higher with 5% NCT (p = 0.02), and NCT + NH<sub>4</sub>Cl (p = 0.05).</p> <p>Histological and ultrastructural investigations revealed no differences between the test and control groups. The surfactant function remained intact. There was no systemic resorption of NCT detectable, and its local inactivation took place within 30 min. The concentration of NCT tolerated by A549 lung epithelial cells <it>in vitro </it>was similar to that known from other body cells (0.25–0.5 mM).</p> <p>Conclusion</p> <p>The endogenous antiseptic NCT was well tolerated at a concentration of 1% upon inhalation in the pig model. Addition of ammonium chloride in high concentration provokes a statistically significant impact on blood oxygenation.</p

    Neutral sphingomyelinase mediates the co-morbidity trias of alcohol abuse, major depression and bone defects

    Get PDF
    Mental disorders are highly comorbid and occur together with physical diseases, which are often considered to arise from separate pathogenic pathways. We observed in alcohol-dependent patients increased serum activity of neutral sphingomyelinase. A genetic association analysis in 456,693 volunteers found associations of haplotypes of SMPD3 coding for NSM-2 (NSM) with alcohol consumption, but also with affective state, and bone mineralisation. Functional analysis in mice showed that NSM controls alcohol consumption, affective behaviour, and their interaction by regulating hippocampal volume, cortical connectivity, and monoaminergic responses. Furthermore, NSM controlled bone–brain communication by enhancing osteocalcin signalling, which can independently supress alcohol consumption and reduce depressive behaviour. Altogether, we identified a single gene source for multiple pathways originating in the brain and bone, which interlink disorders of a mental–physical co-morbidity trias of alcohol abuse—depression/anxiety—bone disorder. Targeting NSM and osteocalcin signalling may, thus, provide a new systems approach in the treatment of a mental–physical co-morbidity trias

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore