65 research outputs found

    Annual Ambient Black Carbon Associated with Shorter Telomeres in Elderly Men: Veterans Affairs Normative Aging Study

    Get PDF
    Background: Telomere length reflects biological age and is inversely associated with risk of cardiovascular disease (CVD). Ambient air pollution is associated with CVD, but its effect on telomere length is unknown. Objective: We investigated whether ambient black carbon (BC), a marker for traffic-related particles, is associated with telomere length in the Normative Aging Study (NAS). Methods: Among 165 never-smoking men from the NAS, leukocyte telomere length (LTL) was measured repeatedly approximately every 3 years from 1999 through 2006 using quantitative real-time polymerase chain reaction (qRT-PCR). BC concentration at their residences during the year before each LTL measurement was estimated based on a spatiotemporal model calibrated with BC measurements from 82 locations within the study area. Results: The median [interquartile range (IQR)] annual moving-average BC concentration was 0.32 (0.20–0.45) μg/m3. LTL, expressed as population-standardized ratio of telomere repeat to single-copy gene copy numbers, had a geometric mean (geometric SD) of 1.25 (1.42). We used linear mixed-effects models including random subject intercepts and adjusted for several potential confounders. We used inverse probability of response weighting to adjust for potential selection bias due to loss to follow-up. An IQR increase in annual BC (0.25 μg/m3) was associated with a 7.6% decrease (95% confidence interval, −12.8 to −2.1) in LTL. We found evidence of effect modification, with a stronger association among subjects ≥ 75 years of age compared with younger participants (p = 0.050) and statin medications appearing protective of the effects of BC on LTL (p = 0.050). Conclusions: Telomere attrition, linked to biological aging, may be associated with long-term exposures to airborne particles, particularly those rich in BC, which are primarily related to automobile traffic

    Inhalable particulate matter and mitochondrial DNA copy number in highly exposed individuals in Beijing, China: a repeated-measure study

    Get PDF
    Background: Mitochondria are both a sensitive target and a primary source of oxidative stress, a key pathway of air particulate matter (PM)-associated diseases. Mitochondrial DNA copy number (MtDNAcn) is a marker of mitochondrial damage and malfunctioning. We evaluated whether ambient PM exposure affects MtDNAcn in a highly-exposed population in Beijing, China. Methods: The Beijing Truck Driver Air Pollution Study was conducted shortly before the 2008 Beijing Olympic Games (June 15-July 27, 2008) and included 60 truck drivers and 60 office workers. Personal PM2.5 and elemental carbon (EC, a tracer of traffic particles) were measured during work hours using portable monitors. Post-work blood samples were obtained on two different days. Ambient PM10 was averaged from 27 monitoring stations in Beijing. Blood MtDNAcn was determined by real-time PCR and examined in association with particle levels using mixed-effect models. Results: In all participants combined, MtDNAcn was negatively associated with personal EC level measured during work hours (β=−0.059, 95% CI: -0.011; -0.0006, p=0.03); and 5-day (β=−0.017, 95% CI: -0.029;-0.005, p=0.01) and 8-day average ambient PM10 (β=−0.008, 95% CI: -0.043; -0.008, p=0.004) after adjusting for possible confounding factors, including study groups. MtDNAcn was also negatively associated among office workers with EC (β=−0.012, 95% CI: -0.022;-0.002, p=0.02) and 8-day average ambient PM10 (β=−0.030, 95% CI: -0.051;-0.008, p=0.007). Conclusions: We observed decreased blood MtDNAcn in association with increased exposure to EC during work hours and recent ambient PM10 exposure. Our results suggest that MtDNAcn may be influenced by particle exposures. Further studies are required to determine the roles of MtDNAcn in the etiology of particle-related diseases

    A Case-Control Study of Peripheral Blood Mitochondrial DNA Copy Number and Risk of Renal Cell Carcinoma

    Get PDF
    Background: Low mitochondrial DNA (mtDNA) copy number is a common feature of renal cell carcinoma (RCC), and may influence tumor development. Results: from a recent case-control study suggest that low mtDNA copy number in peripheral blood may be a marker for increased RCC risk. In an attempt to replicate that finding, we measured mtDNA copy number in peripheral blood DNA from a U.S. population-based case-control study of RCC. Methodology/Principal Findings: Relative mtDNA copy number was measured in triplicate by a quantitative real-time PCR assay using DNA extracted from peripheral whole blood. Cases (n = 603) had significantly lower mtDNA copy number than controls (n = 603; medians 0.85, 0.91 respectively; P = 0.0001). In multiple logistic regression analyses, the lowest quartile of mtDNA copy number was associated with a 60% increase in RCC risk relative to the highest quartile (OR = 1.6, 95% CI = 1.1–2.2; Ptrend = 0.009). This association remained in analyses restricted to cases treated by surgery alone (OR Q1 = 1.4, 95% CI = 1.0–2.1) and to localized tumors (2.0, 1.3–2.8). Conclusions/Significance: Our findings from this investigation, to our knowledge the largest of its kind, offer important confirmatory evidence that low mtDNA copy number is associated with increased RCC risk. Additional research is needed to assess whether the association is replicable in prospective studies

    Effects of Short-Term Exposure to Inhalable Particulate Matter on Telomere Length, Telomerase Expression, and Telomerase Methylation in Steel Workers

    Get PDF
    Shortened leukocyte telomere length (LTL) is a marker of cardiovascular risk that has been recently associated with long-term exposure to ambient particulate matter (PM). However, LTL is increased during acute inflammation and allows for rapid proliferation of inflammatory cells. Whether short-term exposure to proinflammatory exposures such as PM increases LTL has never been evaluated.We investigated the effects of acute exposure to metal-rich PM on blood LTL, as well as molecular mechanisms contributing to LTL regulation in a group of steel workers with high PM exposure.We measured LTL, as well as mRNA expression and promoter DNA methylation of the telomerase catalytic enzyme gene [human telomerase reverse transcriptase (hTERT)] in blood samples obtained from 63 steel workers on the first day of a workweek (baseline) and after 3 days of work (postexposure).LTL was significantly increased in postexposure (mean \ub1 SD, 1.43 \ub1 0.51) compared with baseline samples (1.23 \ub1 0.28, p-value < 0.001). Postexposure LTL was positively associated with PM\u2081\u2080 (\u3b2 = 0.30, p-value = 0.002 for 90th vs. 10th percentile exposure) and PM\u2081 (\u3b2 = 0.29, p-value = 0.042) exposure levels in regression models adjusting for multiple covariates. hTERT expression was lower in postexposure samples (1.31 \ub1 0.75) than at baseline (1.68 \ub1 0.86, p-value < 0.001), but the decrease in hTERT expression did not show a dose-response relationship with PM. We found no exposure-related differences in the methylation of any of the CpG sites investigated in the hTERT promoter.Short-term exposure to PM caused a rapid increase in blood LTL. The LTL increase did not appear to be mediated by PM-related changes in hTERT expression and methylation

    On the Interplay of Telomeres, Nevi and the Risk of Melanoma

    Get PDF
    The relationship between telomeres, nevi and melanoma is complex. Shorter telomeres have been found to be associated with many cancers and with number of nevi, a known risk factor for melanoma. However, shorter telomeres have also been found to decrease melanoma risk. We performed a systematic analysis of telomere-related genes and tagSNPs within these genes, in relation to the risk of melanoma, dysplastic nevi, and nevus count combining data from four studies conducted in Italy. In addition, we examined whether telomere length measured in peripheral blood leukocytes is related to the risk of melanoma, dysplastic nevi, number of nevi, or telomere-related SNPs. A total of 796 cases and 770 controls were genotyped for 517 SNPs in 39 telomere-related genes genotyped with a custom-made array. Replication of the top SNPs was conducted in two American populations consisting of 488 subjects from 53 melanoma-prone families and 1,086 cases and 1,024 controls from a case-control study. We estimated odds ratios for associations with SNPs and combined SNP P-values to compute gene region-specific, functional group-specific, and overall P-value using an adaptive rank-truncated product algorithm. In the Mediterranean population, we found suggestive evidence that RECQL4, a gene involved in genome stability, RTEL1, a gene regulating telomere elongation, and TERF2, a gene implicated in the protection of telomeres, were associated with melanoma, the presence of dysplastic nevi and number of nevi, respectively. However, these associations were not found in the American samples, suggesting variable melanoma susceptibility for these genes across populations or chance findings in our discovery sample. Larger studies across different populations are necessary to clarify these associations

    Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis

    Get PDF
    Background: Infections due to antibiotic-resistant bacteria are threatening modern health care. However, estimating their incidence, complications, and attributable mortality is challenging. We aimed to estimate the burden of infections caused by antibiotic-resistant bacteria of public health concern in countries of the EU and European Economic Area (EEA) in 2015, measured in number of cases, attributable deaths, and disability-adjusted life-years (DALYs). Methods: We estimated the incidence of infections with 16 antibiotic resistance–bacterium combinations from European Antimicrobial Resistance Surveillance Network (EARS-Net) 2015 data that was country-corrected for population coverage. We multiplied the number of bloodstream infections (BSIs) by a conversion factor derived from the European Centre for Disease Prevention and Control point prevalence survey of health-care-associated infections in European acute care hospitals in 2011–12 to estimate the number of non-BSIs. We developed disease outcome models for five types of infection on the basis of systematic reviews of the literature. Findings: From EARS-Net data collected between Jan 1, 2015, and Dec 31, 2015, we estimated 671 689 (95% uncertainty interval [UI] 583 148–763 966) infections with antibiotic-resistant bacteria, of which 63·5% (426 277 of 671 689) were associated with health care. These infections accounted for an estimated 33 110 (28 480–38 430) attributable deaths and 874 541 (768 837–989 068) DALYs. The burden for the EU and EEA was highest in infants (aged <1 year) and people aged 65 years or older, had increased since 2007, and was highest in Italy and Greece. Interpretation: Our results present the health burden of five types of infection with antibiotic-resistant bacteria expressed, for the first time, in DALYs. The estimated burden of infections with antibiotic-resistant bacteria in the EU and EEA is substantial compared with that of other infectious diseases, and has increased since 2007. Our burden estimates provide useful information for public health decision-makers prioritising interventions for infectious diseases
    corecore