265 research outputs found

    Mitochondrial encephalocardio-myopathy with early neonatal onset due to TMEM70 mutation

    Get PDF
    Objective Mitochondrial disturbances of energy-generating systems in childhood are a heterogeneous group of disorders. The aim of this multi-site survey was to characterise the natural course of a novel mitochondrial disease with ATP synthase deficiency and mutation in the TMEM70 gene. Methods Retrospective clinical data and metabolic profiles were collected and evaluated in 25 patients (14 boys, 11 girls) from seven European countries with a c. 317-2A -> G mutation in the TMEM70 gene. Results Severe muscular hypotonia (in 92% of newborns), apnoic spells (92%), hypertrophic cardiomyopathy (HCMP; 76%) and profound lactic acidosis (lactate 5-36 mmol/l; 92%) with hyperammonaemia (100-520 mu mol/l; 86%) were present from birth. Ten patients died within the first 6 weeks of life. Most patients surviving the neonatal period had persisting muscular hypotonia and developed psychomotor delay. HCMP was non-progressive and even disappeared in some children. Hypospadia was present in 54% of the boys and cryptorchidism in 67%. Increased excretion of lactate and 3-methylglutaconic acid (3-MGC) was observed in all patients. In four surviving patients, life-threatening hyperammonaemia occurred during childhood, triggered by acute gastroenteritis and prolonged fasting. Conclusions ATP synthase deficiency with mutation in TMEM70 should be considered in the diagnosis and management of critically ill neonates with early neonatal onset of muscular hypotonia, HCMP and hypospadias in boys accompanied by lactic acidosis, hyperammonaemia and 3-MGC-uria. However, phenotype severity may vary significantly. The disease occurs frequently in the Roma population and molecular-genetic analysis of the TMEM70 gene is sufficient for diagnosis without need of muscle biopsy in affected children

    Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production

    Get PDF
    Metformin is widely prescribed as a first-choice antihyperglycemic drug for treatment of type 2 diabetes mellitus, and recent epidemiological studies showed its utility also in cancer therapy. Although it is in use since the 1970s, its molecular target, either for antihyperglycemic or antineoplastic action, remains elusive. However, the body of the research on metformin effect oscillates around mitochondrial metabolism, including the function of oxidative phosphorylation (OXPHOS) apparatus. In this study, we focused on direct inhibitory mechanism of biguanides (metformin and phenformin) on OXPHOS complexes and its functional impact, using the model of isolated brown adipose tissue mitochondria. We demonstrate that biguanides nonspecifically target the activities of all respiratory chain dehydrogenases (mitochondrial NADH, succinate, and glycerophosphate dehydrogenases), but only at very high concentrations (10−2–10−1 M) that highly exceed cellular concentrations observed during the treatment. In addition, these concentrations of biguanides also trigger burst of reactive oxygen species production which, in combination with pleiotropic OXPHOS inhibition, can be toxic for the organism. We conclude that the beneficial effect of biguanides should probably be associated with subtler mechanism, different from the generalized inhibition of the respiratory chain

    Genetic Association Study of Common Mitochondrial Variants on Body Fat Mass

    Get PDF
    Mitochondria play a central role in ATP production and energy metabolism. Previous studies suggest that common variants in mtDNA are associated with several common complex diseases, including obesity. To test the hypothesis that common mtDNA variants influence obesity-related phenotypes, including BMI and body fat mass, we genotyped a total of 445 mtSNPs across the whole mitochondrial genome in a large sample of 2,286 unrelated Caucasian subjects. 72 of these 445 mtSNPs passed quality control criteria, and were used for subsequent analyses. We also classified all subjects into nine common European haplogroups. Association analyses were conducted for both BMI and body fat mass with single mtSNPs and mtDNA haplogroups. Two mtSNPs, mt4823 and mt8873 were detected to be significantly associated with body fat mass, with adjusted P values of 4.94×10-3 and 4.58×10-2, respectively. The minor alleles mt4823 C and mt8873 A were associated with reduced fat mass values and the effect size (β) was estimated to be 3.52 and 3.18, respectively. These two mtSNPs also achieved nominally significant levels for association with BMI. For haplogroup analyses, we found that haplogroup X was strongly associated with both BMI (adjusted P = 8.31×10-3) and body fat mass (adjusted P = 5.67×10-4) Subjects classified as haplogroup X had lower BMI and fat mass values, with the β estimated to be 2.86 and 6.03, respectively. Our findings suggest that common variants in mitochondria might play a role in variations of body fat mass. Further molecular and functional studies will be needed to clarify the potential mechanism

    Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce-beta oxidation in white fat

    Get PDF
    Aims/hypothesis Intake of n-3 polyunsaturated fatty acids reduces adipose tissue mass, preferentially in the abdomen. The more pronounced effect of marine-derived eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on adiposity, compared with their precursor -linolenic acid, may be mediated by changes in gene expression and metabolism in white fat. Methods The effects of EPA/DHA concentrate (6% EPA, 51% DHA) admixed to form two types of high-fat diet were studied in C57BL/6J mice. Oligonucleotide microarrays, cDNA PCR subtraction and quantitative real-time RT-PCR were used to characterise gene expression. Mitochondrial proteins were quantified using immunoblots. Fatty acid oxidation and synthesis were measured in adipose tissue fragments. Results Expression screens revealed upregulation of genes for mitochondrial proteins, predominantly in epididymal fat when EPA/DHA concentrate was admixed to a semisynthetic high-fat diet rich in -linolenic acid. This was associated with a three-fold stimulation of the expression of genes encoding regulatory factors for mitochondrial biogenesis and oxidative metabolism (peroxisome proliferator-activated receptor gamma coactivator 1 alpha [Ppargc1a, also known as Pgc1] and nuclear respiratory factor-1 [Nrf1] respectively). Expression of genes for carnitine palmitoyltransferase 1A and fatty acid oxidation was increased in epididymal but not subcutaneous fat. In the former depot, lipogenesis was depressed. Similar changes in adipose gene expression were detected after replacement of as little as 15% of lipids in the composite high-fat diet with EPA/DHA concentrate, while the development of obesity was reduced. The expression of Ppargc1a and Nrf1 was also stimulated by n-3 polyunsaturated fatty acids in 3T3-L1 cells. Conclusions/interpretation The anti-adipogenic effect of EPA/DHA may involve a metabolic switch in adipocytes that includes enhancement of -oxidation and upregulation of mitochondrial biogenesi

    Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    Get PDF
    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues

    Perspectives and Potential Applications of Mitochondria-Targeted Antioxidants in Cardiometabolic Diseases and Type 2 Diabetes

    Get PDF
    There is abundant evidence to suggest that mitochondrial dysfunction is a main cause of insulin resistance and related cardiometabolic comorbidities. On the other hand, insulin resistance is one of the main characteristics of type 2 diabetes, obesity, and metabolic syndrome. Lipid and glucose metabolism require mitochondria to generate energy, and when O2 consumption is low due to inefficient nutrient oxidation, there is an increase in reactive oxygen species, which can impair different types of molecules, including DNA, lipids, proteins, and carbohydrates, thereby inducing proinflammatory processes. Factors which contribute to mitochondrial dysfunction, such as mitochondrial biogenesis and genetics, can also lead to insulin resistance in different insulin-target tissues, and its association with mitochondrial dysfunction can culminate in the development of cardiovascular diseases. In this context, therapies that improve mitochondrial function may also improve insulin resistance. This review explains mechanisms of mitochondrial function related to the pathological effects of insulin resistance in different tissues. The pathogenesis of cardiometabolic diseases will be explained from a mitochondrial perspective and the potential beneficial effects of mitochondria-targeted antioxidants as a therapy for modulating mitochondrial function in cardiometabolic diseases, especially diabetes, will also be considered.Contract grant sponsor: PI10/1195; Contract grant sponsor: PI 12/1984; Contract grant sponsor: CIBERehd CB06/04/0071; Contract grant sponsor: PROMETEO 2010/060; Contract grant sponsor: ACOMP/2012/042; Contract grant sponsor: ACOMP/2012/045; Contract grant sponsor: ACOMP2013/061; Contract grant sponsor: European Regional Development Fund (ERDF)

    Mitochondrial ATP synthase: architecture, function and pathology

    Get PDF
    Human mitochondrial (mt) ATP synthase, or complex V consists of two functional domains: F1, situated in the mitochondrial matrix, and Fo, located in the inner mitochondrial membrane. Complex V uses the energy created by the proton electrochemical gradient to phosphorylate ADP to ATP. This review covers the architecture, function and assembly of complex V. The role of complex V di-and oligomerization and its relation with mitochondrial morphology is discussed. Finally, pathology related to complex V deficiency and current therapeutic strategies are highlighted. Despite the huge progress in this research field over the past decades, questions remain to be answered regarding the structure of subunits, the function of the rotary nanomotor at a molecular level, and the human complex V assembly process. The elucidation of more nuclear genetic defects will guide physio(patho)logical studies, paving the way for future therapeutic interventions

    Bi-allelic Mutations in NDUFA6 Establish Its Role in Early-Onset Isolated Mitochondrial Complex I Deficiency.

    Get PDF
    Isolated complex I deficiency is a common biochemical phenotype observed in pediatric mitochondrial disease and often arises as a consequence of pathogenic variants affecting one of the ∼65 genes encoding the complex I structural subunits or assembly factors. Such genetic heterogeneity means that application of next-generation sequencing technologies to undiagnosed cohorts has been a catalyst for genetic diagnosis and gene-disease associations. We describe the clinical and molecular genetic investigations of four unrelated children who presented with neuroradiological findings and/or elevated lactate levels, highly suggestive of an underlying mitochondrial diagnosis. Next-generation sequencing identified bi-allelic variants in NDUFA6, encoding a 15 kDa LYR-motif-containing complex I subunit that forms part of the Q-module. Functional investigations using subjects' fibroblast cell lines demonstrated complex I assembly defects, which were characterized in detail by mass-spectrometry-based complexome profiling. This confirmed a marked reduction in incorporated NDUFA6 and a concomitant reduction in other Q-module subunits, including NDUFAB1, NDUFA7, and NDUFA12. Lentiviral transduction of subjects' fibroblasts showed normalization of complex I. These data also support supercomplex formation, whereby the ∼830 kDa complex I intermediate (consisting of the P- and Q-modules) is in complex with assembled complex III and IV holoenzymes despite lacking the N-module. Interestingly, RNA-sequencing data provided evidence that the consensus RefSeq accession number does not correspond to the predominant transcript in clinically relevant tissues, prompting revision of the NDUFA6 RefSeq transcript and highlighting not only the importance of thorough variant interpretation but also the assessment of appropriate transcripts for analysis
    corecore