385 research outputs found

    UV Circular Polarisation in Star Formation Regions : The Origin of Homochirality?

    Get PDF
    Ultraviolet circularly polarised light has been suggested as the initial cause of the homochirality of organic molecules in terrestrial organisms, via enantiomeric selection of prebiotic molecules by asymmetric photolysis. We present a theoretical investigation of mechanisms by which ultraviolet circular polarisation may be produced in star formation regions. In the scenarios considered here, light scattering produces only a small percentage of net circular polarisation at any point in space, due to the forward throwing nature of the phase function in the ultraviolet. By contrast, dichroic extinction can produce a fairly high percentage of net circular polarisation (∼10%) and may therefore play a key role in producing an enantiomeric excessPeer reviewe

    Post-Newtonian SPH calculations of binary neutron star coalescence. II. Binary mass ratio, equation of state, and spin dependence

    Full text link
    Using our new Post-Newtonian SPH (smoothed particle hydrodynamics) code, we study the final coalescence and merging of neutron star (NS) binaries. We vary the stiffness of the equation of state (EOS) as well as the initial binary mass ratio and stellar spins. Results are compared to those of Newtonian calculations, with and without the inclusion of the gravitational radiation reaction. We find a much steeper decrease in the gravity wave peak strain and luminosity with decreasing mass ratio than would be predicted by simple point-mass formulae. For NS with softer EOS (which we model as simple Γ=2\Gamma=2 polytropes) we find a stronger gravity wave emission, with a different morphology than for stiffer EOS (modeled as Γ=3\Gamma=3 polytropes as in our previous work). We also calculate the coalescence of NS binaries with an irrotational initial condition, and find that the gravity wave signal is relatively suppressed compared to the synchronized case, but shows a very significant second peak of emission. Mass shedding is also greatly reduced, and occurs via a different mechanism than in the synchronized case. We discuss the implications of our results for gravity wave astronomy with laser interferometers such as LIGO, and for theoretical models of gamma-ray bursts (GRBs) based on NS mergers.Comment: RevTeX, 38 pages, 24 figures, Minor Corrections, to appear in Phys. Rev.

    Post-Newtonian SPH calculations of binary neutron star coalescence. I. Method and first results

    Get PDF
    We present the first results from our Post-Newtonian (PN) Smoothed Particle Hydrodynamics (SPH) code, which has been used to study the coalescence of binary neutron star (NS) systems. The Lagrangian particle-based code incorporates consistently all lowest-order (1PN) relativistic effects, as well as gravitational radiation reaction, the lowest-order dissipative term in general relativity. We test our code on sequences of single NS models of varying compactness, and we discuss ways to make PN simulations more relevant to realistic NS models. We also present a PN SPH relaxation procedure for constructing equilibrium models of synchronized binaries, and we use these equilibrium models as initial conditions for our dynamical calculations of binary coalescence. Though unphysical, since tidal synchronization is not expected in NS binaries, these initial conditions allow us to compare our PN work with previous Newtonian results. We compare calculations with and without 1PN effects, for NS with stiff equations of state, modeled as polytropes with Γ=3\Gamma=3. We find that 1PN effects can play a major role in the coalescence, accelerating the final inspiral and causing a significant misalignment in the binary just prior to final merging. In addition, the character of the gravitational wave signal is altered dramatically, showing strong modulation of the exponentially decaying waveform near the end of the merger. We also discuss briefly the implications of our results for models of gamma-ray bursts at cosmological distances.Comment: RevTeX, 37 pages, 17 figures, to appear in Phys. Rev. D, minor corrections onl

    Binary and Millisecond Pulsars at the New Millennium

    Get PDF
    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run

    Get PDF
    We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during LIGO's fifth science run and Virgo's first science run. We present noise spectral density curves for each of the four detectors that operated during these science runs which are representative of the typical performance achieved by the detectors for CBC searches. These spectra are intended for release to the public as a summary of detector performance for CBC searches during these science runs.Comment: 12 pages, 5 figure

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts

    Full text link
    We outline the scientific motivation behind a search for gravitational waves associated with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGO's fifth science run and Virgo's first science run. The IPN localisation of short gamma ray bursts is limited to extended error boxes of different shapes and sizes and a search on these error boxes poses a series of challenges for data analysis. We will discuss these challenges and outline the methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on Gravitational Waves, July 2011, Cardiff, U

    Swift follow-up observations of candidate gravitational-wave transient events

    Get PDF
    We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge". With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25, published 2012 November 21, in ApJS, 203, 28 ( http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables; LIGO-P1100038; Science summary at http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003

    Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3

    Get PDF
    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009 and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25 solar masses; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90%-confidence rate upper limits of the binary coalescence of binary neutron star, neutron star- black hole and binary black hole systems are 1.3 x 10^{-4}, 3.1 x 10^{-5} and 6.4 x 10^{-6} Mpc^{-3}yr^{-1}, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.Comment: 11 pages, 5 figures. For a repository of data used in the publication, go to: . Also see the announcement for this paper on ligo.org at: <http://www.ligo.org/science/Publication-S6CBCLowMass/index.php
    corecore