363 research outputs found
Aerodynamic stability analysis of NASA J85-13/planar pressure pulse generator installation
A digital computer simulation model for the J85-13/Planar Pressure Pulse Generator (P3 G) test installation was developed by modifying an existing General Electric compression system model. This modification included the incorporation of a novel method for describing the unsteady blade lift force. This approach significantly enhanced the capability of the model to handle unsteady flows. In addition, the frequency response characteristics of the J85-13/P3G test installation were analyzed in support of selecting instrumentation locations to avoid standing wave nodes within the test apparatus and thus, low signal levels. The feasibility of employing explicit analytical expression for surge prediction was also studied
Proposed Framework for Smart Healthcare Services
Smart healthcare is of great interest to researchers and governments due to the increasing development of new smart cities. However, there is no current standard practice to format the cloud computing infrastructure and to assist the healthcare system architect in designing a comprehensive solution for the basic services that are required by the healthcare users while taking into consideration a balanced approach towards their specific functional and non-functional needs such as openness, scalability, concurrency, interoperability and security factors. The integration of smart healthcare services with cloud computing needs a concrete framework. The main objective of this paper is to analyze the different frameworks that discuss smart healthcare services and reach to a conclusion of the common factors to arrive at a unified and smart framework
Effect of dexamethasone on reducing pain and gastrointestinal symptoms associated with cesarean section: a systematic review and meta-analysis
Background: Dexamethasone has analgesic and antiemetic actions that have been documented in the literature. Therefore, we performed a systematic review and meta-analysis to investigate its overall effectiveness in reducing a variety of negative outcomes after cesarean section.
Objectives: To investigate the efficacy and safety of dexamethasone for reducing pain associated with cesarean section, nausea, vomiting, pruritus, postoperative need for analgesia, postoperative antiemetic requests and headache.
Methods: We searched PubMed, Cochrane CENTRAL, SCOPUS, and Web of Science for relevant clinical trials. We then performed a systematic review and meta-analysis, including only randomized, placebo-controlled clinical trials. Our main population target was women undergoing elective cesarean delivery. The intervention under consideration was dexamethasone administered both by intravenous (IV) or subcutaneous (SC) over a variety of doses. The comparator was a placebo. Our main outcomes included: (1) perceptions as indicated by pain scores, (2) occurrence of nausea and (3) occurrence of vomiting. Secondary outcomes included: (4) occurrence of pruritus, (5) need for postoperative analgesia, (6) need for postoperative antiemetic drugs and (7) occurrence of headache. We assessed the quality of included studies using the risk of bias tool described in Cochrane\u27s handbook for systematic reviews of interventions.
Results: We found that dexamethasone seemed to significantly reduce scores for pain at rest (p<0.001), as well as occurrence of nausea (p<0.001) and vomiting (p<0.001). The drug also showed significant reduction of negative symptoms in other secondary outcomes, including need for postoperative analgesia (p<0.001) and postoperative antiemetic drugs (p<0.001). However, the drug showed no significant effect in reducing headache and pruritus or in improving pain at movement scores.
Conclusion: Dexamethasone appears to decrease perception of pain at rest and protects against nausea and vomiting. However, it does not seem effective against headaches or pruritus
Neutralizing activities of caprine antibodies towards conserved regions of the HCV envelope glycoprotein E2
Anti HCV vaccine is not currently available and the present antiviral therapies fail to cure approximately half of the treated HCV patients. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from the C-terminal region of HVR-1 and test their neutralizing activities in a step towards developing therapeutic and/or prophylactic immunogens against HCV infection. Antibodies were generated by vaccination of goats with synthetic peptides derived from HCV E2. Viral neutralizing capacity of the generated anti E2 antibodies was tested using in vitro assays. Goats immunized with E2 synthetic peptides termed p412 [a.a 412-419], p430 [a.a 430-447] and p517 [a.a 517-531] generated high titers of antibody responses 2 to 4.5 fold higher than comparable titers of antibodies to the same epitopes in chronic HCV patients. In post infection experiments of native HCV into cultured Huh7.5 cells anti p412 and anti p 517 were proven to be neutralizing to HCV genotype 4a from patients' sera (87.5% and 75% respectively). On the contrary anti p430 exhibited weak viral neutralization capacity on the same samples (31.25%). Furthermore Ab mixes containing anti p430 exhibited reduced viral neutralization properties. From these experiments one could predict that neutralization by Abs towards different E2-epitopes varies considerably and success in the enrichment of neutralization epitope-specific antibodies may be accompanied by favorable results in combating HCV infection. Also, E2 conserved peptides p517 and p412 represent potential components of a candidate peptide vaccine against HCV infection
MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response
Predicting clinical outcome is remarkably important but challenging. Research
efforts have been paid on seeking significant biomarkers associated with the
therapy response or/and patient survival. However, these biomarkers are
generally costly and invasive, and possibly dissatifactory for novel therapy.
On the other hand, multi-modal, heterogeneous, unaligned temporal data is
continuously generated in clinical practice. This paper aims at a unified deep
learning approach to predict patient prognosis and therapy response, with
easily accessible data, e.g., radiographics, laboratory and clinical
information. Prior arts focus on modeling single data modality, or ignore the
temporal changes. Importantly, the clinical time series is asynchronous in
practice, i.e., recorded with irregular intervals. In this study, we formalize
the prognosis modeling as a multi-modal asynchronous time series classification
task, and propose a MIA-Prognosis framework with Measurement, Intervention and
Assessment (MIA) information to predict therapy response, where a Simple
Temporal Attention (SimTA) module is developed to process the asynchronous time
series. Experiments on synthetic dataset validate the superiory of SimTA over
standard RNN-based approaches. Furthermore, we experiment the proposed method
on an in-house, retrospective dataset of real-world non-small cell lung cancer
patients under anti-PD-1 immunotherapy. The proposed method achieves promising
performance on predicting the immunotherapy response. Notably, our predictive
model could further stratify low-risk and high-risk patients in terms of
long-term survival.Comment: MICCAI 2020 (Early Accepted; Student Travel Award
Persistence of TEL-AML1 fusion gene as minimal residual disease has no additive prognostic value in CD 10 positive B-acute lymphoblastic leukemia: a FISH study
<p>Abstract</p> <p>Objectives </p> <p>We have analyzed t(12;21)(p13:q22) in an attempt to evaluate the frequency and prognostic significance of <it>TEL-AML1 </it>fusion gene in patients with childhood CD 10 positive B-ALL by fluorescence in situ hybridization (FISH). Also, we have monitored the prognostic value of this gene as a minimal residual disease (MRD).</p> <p>Methods</p> <p>All bone marrow samples of eighty patients diagnosed as CD 10 positive B-ALL in South Egypt Cancer Institute were evaluated by fluorescence in situ hybridization (FISH) for t(12;21) in newly diagnosed cases and after morphological complete remission as a minimal residual disease (MRD). We determined the prognostic significance of <it>TEL-AML1 </it>fusion represented by disease course and survival.</p> <p>Results</p> <p><it>TEL-AML1 </it>fusion gene was positive in (37.5%) in newly diagnosed patients. There was a significant correlation between <it>TEL-AML1 </it>fusion gene both at diagnosis (r = 0.5, P = 0.003) and as a MRD (r = 0.4, P = 0.01) with favorable course. Kaplan-Meier curve for the presence of <it>TEL-AML1 </it>fusion at the diagnosis was associated with a better probability of overall survival (OS); mean survival time was 47 ± 1 month, in contrast to 28 ± 5 month in its absence (P = 0.006). Also, the persistence at <it>TEL-AML1 </it>fusion as a MRD was not significantly associated with a better probability of OS; the mean survival time was 42 ± 2 months in the presence of MRD and it was 40 ± 1 months in its absence. So, persistence of <it>TEL-AML1 </it>fusion as a MRD had no additive prognostic value over its measurement at diagnosis in terms of predicting the probability of OS.</p> <p>Conclusion</p> <p>For most patients, the presence of <it>TEL-AML1 </it>fusion gene at diagnosis suggests a favorable prognosis. The present study suggests that persistence of <it>TEL-AML1 </it>fusion as MRD has no additive prognostic value.</p
Orthodontics in the era of big data analytics
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149344/1/ocr12279_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149344/2/ocr12279.pd
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Super-Resolution Imaging Strategies for Cell Biologists Using a Spinning Disk Microscope
In this study we use a spinning disk confocal microscope (SD) to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM)/Stochastic Optical Reconstruction Microscopy (STORM) methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM) and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging
- …