243 research outputs found
MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response
Predicting clinical outcome is remarkably important but challenging. Research
efforts have been paid on seeking significant biomarkers associated with the
therapy response or/and patient survival. However, these biomarkers are
generally costly and invasive, and possibly dissatifactory for novel therapy.
On the other hand, multi-modal, heterogeneous, unaligned temporal data is
continuously generated in clinical practice. This paper aims at a unified deep
learning approach to predict patient prognosis and therapy response, with
easily accessible data, e.g., radiographics, laboratory and clinical
information. Prior arts focus on modeling single data modality, or ignore the
temporal changes. Importantly, the clinical time series is asynchronous in
practice, i.e., recorded with irregular intervals. In this study, we formalize
the prognosis modeling as a multi-modal asynchronous time series classification
task, and propose a MIA-Prognosis framework with Measurement, Intervention and
Assessment (MIA) information to predict therapy response, where a Simple
Temporal Attention (SimTA) module is developed to process the asynchronous time
series. Experiments on synthetic dataset validate the superiory of SimTA over
standard RNN-based approaches. Furthermore, we experiment the proposed method
on an in-house, retrospective dataset of real-world non-small cell lung cancer
patients under anti-PD-1 immunotherapy. The proposed method achieves promising
performance on predicting the immunotherapy response. Notably, our predictive
model could further stratify low-risk and high-risk patients in terms of
long-term survival.Comment: MICCAI 2020 (Early Accepted; Student Travel Award
Ethnicity, consanguinity, and genetic architecture of hypertrophic cardiomyopathy
AIMS: Hypertrophic cardiomyopathy (HCM) is characterized by phenotypic heterogeneity that is partly explained by the diversity of genetic variants contributing to disease. Accurate interpretation of these variants constitutes a major challenge for diagnosis and implementing precision medicine, especially in understudied populations. The aim is to define the genetic architecture of HCM in North African cohorts with high consanguinity using ancestry-matched cases and controls. METHODS AND RESULTS: Prospective Egyptian patients (n = 514) and controls (n = 400) underwent clinical phenotyping and genetic testing. Rare variants in 13 validated HCM genes were classified according to standard clinical guidelines and compared with a prospective HCM cohort of majority European ancestry (n = 684). A higher prevalence of homozygous variants was observed in Egyptian patients (4.1% vs. 0.1%, P = 2 × 10-7), with variants in the minor HCM genes MYL2, MYL3, and CSRP3 more likely to present in homozygosity than the major genes, suggesting these variants are less penetrant in heterozygosity. Biallelic variants in the recessive HCM gene TRIM63 were detected in 2.1% of patients (five-fold greater than European patients), highlighting the importance of recessive inheritance in consanguineous populations. Finally, rare variants in Egyptian HCM patients were less likely to be classified as (likely) pathogenic compared with Europeans (40.8% vs. 61.6%, P = 1.6 × 10-5) due to the underrepresentation of Middle Eastern populations in current reference resources. This proportion increased to 53.3% after incorporating methods that leverage new ancestry-matched controls presented here. CONCLUSION: Studying consanguineous populations reveals novel insights with relevance to genetic testing and our understanding of the genetic architecture of HCM
New variant with a previously unrecognized mechanism of pathogenicity in hypertrophic cardiomyopathy
Omega-3 supplementation in patients with sepsis: a systematic review and meta-analysis of randomized trials.
BACKGROUND: Nutritional supplementation of omega-3 fatty acids has been proposed to modulate the balance of pro- and anti-inflammatory mediators in sepsis. If proved to improve clinical outcomes in critically ill patients with sepsis, this intervention would be easy to implement. However, the cumulative evidence from several randomized clinical trials (RCTs) remains unclear. METHODS: We searched the Cochrane Library, MEDLINE, and EMBASE through December 2016 for RCTs on parenteral or enteral omega-3 supplementation in adult critically ill patients diagnosed with sepsis or septic shock. We analysed the included studies for mortality, intensive care unit (ICU) length of stay, and duration of mechanical ventilation, and used the Grading of Recommendations Assessment, Development and Evaluation approach to assess the quality of the evidence for each outcome. RESULTS: A total of 17 RCTs enrolling 1239 patients met our inclusion criteria. Omega-3 supplementation compared to no supplementation or placebo had no significant effect on mortality [relative risk (RR) 0.85; 95% confidence interval (CI) 0.71, 1.03; P = 0.10; I (2) = 0%; moderate quality], but significantly reduced ICU length of stay [mean difference (MD) -3.79 days; 95% CI -5.49, -2.09; P < 0.0001, I (2) = 82%; very low quality] and duration of mechanical ventilation (MD -2.27 days; 95% CI -4.27, -0.27; P = 0.03, I (2) = 60%; very low quality). However, sensitivity analyses challenged the robustness of these results. CONCLUSION: Omega-3 nutritional supplementation may reduce ICU length of stay and duration of mechanical ventilation without significantly affecting mortality, but the very low quality of overall evidence is insufficient to justify the routine use of omega-3 fatty acids in the management of sepsis
Enhancement of antifungal activity and transdermal delivery of 5-flucytosine via tailored spanlastic nanovesicles: statistical optimization, in-vitro characterization, and in-vivo biodistribution study
Aim and background: This current study aimed to load 5-flucytosine (5-FCY) into spanlastic nanovesicles (SPLNs) to make the drug more efficient as an antifungal and also to load the 5-FCY into a hydrogel that would allow for enhanced transdermal permeation and improved patient compliance.Methods: The preparation of 5-FCY-SPLNs was optimized by using a central composite design that considered Span 60 (X1) and the edge activator Tween 80 (X2) as process variables in achieving the desired particle size and entrapment efficiency. A formulation containing 295.79 mg of Span 60 and 120.00 mg of Tween 80 was found to meet the prerequisites of the desirability method. The optimized 5-FCY-SPLN formulation was further formulated into a spanlastics gel (SPG) so that the 5-FCY-SPLNs could be delivered topically and characterized in terms of various parameters.Results: As required, the SPG had the desired elasticity, which can be credited to the physical characteristics of SPLNs. An ex-vivo permeation study showed that the greatest amount of 5-FCY penetrated per unit area (Q) (mg/cm2) over time and the average flux (J) (mg/cm2/h) was at the end of 24 h. Drug release studies showed that the drug continued to be released until the end of 24 h and that the pattern was correlated with an ex-vivo permeation and distribution study. The biodistribution study showed that the 99mTc-labeled SFG that permeated the skin had a steadier release pattern, a longer duration of circulation with pulsatile behavior in the blood, and higher levels in the bloodstream than the oral 99mTc-SPNLs. Therefore, a 5-FCY transdermal hydrogel could possibly be a long-acting formula for maintenance treatment that could be given in smaller doses and less often than the oral formula
Super-Resolution Imaging Strategies for Cell Biologists Using a Spinning Disk Microscope
In this study we use a spinning disk confocal microscope (SD) to generate super-resolution images of multiple cellular features from any plane in the cell. We obtain super-resolution images by using stochastic intensity fluctuations of biological probes, combining Photoactivation Light-Microscopy (PALM)/Stochastic Optical Reconstruction Microscopy (STORM) methodologies. We compared different image analysis algorithms for processing super-resolution data to identify the most suitable for analysis of particular cell structures. SOFI was chosen for X and Y and was able to achieve a resolution of ca. 80 nm; however higher resolution was possible >30 nm, dependant on the super-resolution image analysis algorithm used. Our method uses low laser power and fluorescent probes which are available either commercially or through the scientific community, and therefore it is gentle enough for biological imaging. Through comparative studies with structured illumination microscopy (SIM) and widefield epifluorescence imaging we identified that our methodology was advantageous for imaging cellular structures which are not immediately at the cell-substrate interface, which include the nuclear architecture and mitochondria. We have shown that it was possible to obtain two coloured images, which highlights the potential this technique has for high-content screening, imaging of multiple epitopes and live cell imaging
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Antimicrobial resistance of Campylobacter isolates from small scale and backyard chicken in Kenya
Background Thermophilic Campylobacter species are a major cause of bacterial
foodborne diarrhoea in humans worldwide. Poultry and their products are the
predominant source for human campylobacteriosis. Resistance of Campylobacter
to antibiotics is increasing worldwide, but little is known about the
antibiotic resistance in Campylobacter isolated from chicken in Kenya. In this
study, 35 suspected Campylobacter strains isolated from faeces and cloacal
swabs of chicken were tested for their susceptibility to seven antibiotics
using a broth microdilution assay and molecular biological investigations.
Results Overall, DNA of thermophilic Campylobacter was identified in 53
samples by PCR (34 C. jejuni, 18 C. coli and one mix of both species) but only
35 Campylobacter isolates (31 C. jejuni and 4 C. coli) could be re-cultivated
after transportation to Germany. Isolates were tested for their susceptibility
to antibiotics using a broth microdilution assay. Additionally, molecular
biological detection of antibiotic resistance genes was carried out. C. jejuni
isolates showed a high rate of resistance to nalidixic acid, tetracycline and
ciprofloxacin of 77.4, 71.0 and 71.0 %, respectively. Low resistance (25.8 %)
was detected for gentamicin and chloramphenicol. Multidrug resistance in C.
jejuni could be detected in 19 (61.3 %) isolates. Resistance pattern of C.
coli isolates was comparable. Resistance to ciprofloxacin was confirmed by
MAMA–PCR and PCR–RFLP in all phenotypically resistant isolates. The tet(O)
gene was detected only in 54.5 % of tetracycline resistant C. jejuni isolates.
The tet(A) gene, which is also responsible for tetracycline resistance, was
found in 90.3 % of C. jejuni and in all C. coli isolates. Thirteen
phenotypically erythromycin-resistant isolates could not be characterised by
using PCR–RFLP and MAMA–PCR. Conclusions To the best of our knowledge, this
study is the first report about resistance to antibiotics in thermophilic
Campylobacter originating from chicken in Kenya. Campylobacter spp. show a
high level of resistance to ciprofloxacin, nalidixic acid and tetracycline but
also a remarkable one to chloramphenicol and gentamicin and they are multidrug
resistant. Resistance to antibiotics is a global public health concern. In
Kenya, resistance surveillance needs further attention in the future. Efforts
to establish at least a National Laboratory with facilities for performing
phenotypic and genotypic characterization of thermophilic Campylobacter is
highly recommended
- …