124 research outputs found

    Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management in California

    Get PDF
    A growing population and an increased demand for water resources have resulted in a global trend of groundwater depletion. Arid and semi-arid climates are particularly susceptible, often relying on groundwater to support large population centers or irrigated agriculture in the absence of sufficient surface water resources. In an effort to increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the approach of intentionally harvesting and infiltrating water to recharge depleted aquifer storage. California is a prime example of this growing problem, with three cities that have over a million residents and an agricultural industry that was valued at 47 billion dollars in 2015. The present-day groundwater overdraft of over 100 km3 (since 1962) indicates a clear disparity between surface water supply and water demand within the state. In the face of groundwater overdraft and the anticipated effects of climate change, many new MAR projects are being constructed or investigated throughout California, adding to those that have existed for decades. Some common MAR types utilized in California include injection wells, infiltration basins (also known as spreading basins, percolation basins, or recharge basins), and low-impact development. An emerging MAR type that is actively being investigated is the winter flooding of agricultural fields using existing irrigation infrastructure and excess surface water resources, known as agricultural MAR. California therefore provides an excellent case study to look at the historical use and performance of MAR, ongoing and emerging challenges, novel MAR applications, and the potential for expansion of MAR. Effective MAR projects are an essential tool for increasing groundwater security, both in California and on a global scale. This chapter aims to provide an overview of the most common MAR types and applications within the State of California and neighboring semi-arid regions

    Cannabidiol Reduces Intestinal Inflammation through the Control of Neuroimmune Axis

    Get PDF
    Enteric glial cells (EGC) actively mediate acute and chronic inflammation in the gut; EGC proliferate and release neurotrophins, growth factors, and pro-inflammatory cytokines which, in turn, may amplify the immune response, representing a very important link between the nervous and immune systems in the intestine. Cannabidiol (CBD) is an interesting compound because of its ability to control reactive gliosis in the CNS, without any unwanted psychotropic effects. Therefore the rationale of our study was to investigate the effect of CBD on intestinal biopsies from patients with ulcerative colitis (UC) and from intestinal segments of mice with LPS-induced intestinal inflammation. CBD markedly counteracted reactive enteric gliosis in LPS-mice trough the massive reduction of astroglial signalling neurotrophin S100B. Histological, biochemical and immunohistochemical data demonstrated that S100B decrease was associated with a considerable decrease in mast cell and macrophages in the intestine of LPS-treated mice after CBD treatment. Moreover the treatment of LPS-mice with CBD reduced TNF-α expression and the presence of cleaved caspase-3. Similar results were obtained in ex vivo cultured human derived colonic biopsies. In biopsies of UC patients, both during active inflammation and in remission stimulated with LPS+INF-γ, an increased glial cell activation and intestinal damage were evidenced. CBD reduced the expression of S100B and iNOS proteins in the human biopsies confirming its well documented effect in septic mice. The activity of CBD is, at least partly, mediated via the selective PPAR-gamma receptor pathway. CBD targets enteric reactive gliosis, counteracts the inflammatory environment induced by LPS in mice and in human colonic cultures derived from UC patients. These actions lead to a reduction of intestinal damage mediated by PPARgamma receptor pathway. Our results therefore indicate that CBD indeed unravels a new therapeutic strategy to treat inflammatory bowel diseases

    Utilizing Spatial Demographic and Life History Variation to Optimize Sustainable Yield of a Temperate Sex-Changing Fish

    Get PDF
    Fish populations vary geographically in demography and life history due to environmental and ecological processes and in response to exploitation. However, population dynamic models and stock assessments, used to manage fisheries, rarely explicitly incorporate spatial variation to inform management decisions. Here, we describe extensive geographic variation in several demographic and life history characteristics (e.g., size structure, growth, survivorship, maturation, and sex change) of California sheephead (Semicossyphus pulcher), a temperate rocky reef fish targeted by recreational and commercial fisheries. Fish were sampled from nine locations throughout southern California in 2007–2008. We developed a dynamic size and age-structured model, parameterized separately for each location, to assess the potential cost or benefit in terms of fisheries yield and conservation objectives of changing minimum size limits and/or fishing mortality rates (compared to the status quo). Results indicate that managing populations individually, with location-specific regulations, could increase yield by over 26% while maintaining conservative levels of spawning biomass. While this local management approach would be challenging to implement in practice, we found statistically similar increases in yield could be achieved by dividing southern California into two separate management regions, reflecting geographic similarities in demography. To maximize yield, size limits should be increased by 90 mm in the northern region and held at current levels in the south. We also found that managing the fishery as one single stock (the status quo), but with a size limit 50 mm greater than the current regulations, could increase overall fishery yield by 15%. Increases in size limits are predicted to enhance fishery yield and may also have important ecological consequences for the predatory role of sheephead in kelp forests. This framework for incorporating demographic variation into fisheries models can be exported generally to other species and may aid in identifying the appropriate spatial scales for fisheries management

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Get PDF
    In the last two decades there have been dramatic changes in the epidemiology of Clostridium difficile infection (CDI), with increases in incidence and severity of disease in many countries worldwide. The incidence of CDI has also increased in surgical patients. Optimization of management of C difficile, has therefore become increasingly urgent. An international multidisciplinary panel of experts prepared evidenced-based World Society of Emergency Surgery (WSES) guidelines for management of CDI in surgical patients.Peer reviewe

    WSES guidelines for management of Clostridium difficile infection in surgical patients

    Full text link

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Exposure to anti-TNF agents in utero: controlling health risks

    No full text
    A recent study reports on drug clearance in newborn babies after in utero exposure to anti-TNF antibodies, infliximab and adalimumab. As women with IBD are increasingly exposed to these drugs due to changing treatment paradigms and earlier diagnosis, this commentary explores these clinically important results
    • …
    corecore