4 research outputs found
The effect of probe tilt angle on the quality of scanning tunneling microscope measurements
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (p. 39 ).The effect of probe tilt angle on the quality of Scanning Tunneling Microscopy (STM) measurements was explored. A small but consistent improvement in slope accuracy was documented lending some support to the effort to develop a new, five-axis STM capable of tilting in a controlled manner while scanning. The objective of such a machine would be to allow its probe to trace the sample's contour with greater accuracy than the currently available three-axis STM can. It is postulated that an STM with a probe that can change its roll and pitch in addition to its position along the traditional x, y, and z axes would be capable of reducing imaging errors produced as a result of geometric constraints, lateral electron discharge effects, and the tendency for the tip to bend during scanning due to electrostatic surface forces. In order to quantify the effects of incorporating probe tilt into the scanning process, a traditional, three-axis STM was manipulated in a way that allowed a standard sample grid to be imaged using a probe that was placed at seven different angles of tilt ranging from -13 to +13 degrees. Twenty-five different cavities in a standard STM scanning sample were scanned at these seven angles to determine notable trends and effects in the images produced.(cont.) It was determined that for each degree of angle change in the tilt of the probe, the slopes of the cavity walls imaged improved by an amount of slope equal to approximately 0.001 nm/nm, which corresponds to 0.0093% less imaging error. This seemingly trivial improvement in wall slope is significant in light of the fact that the change in slope per degree of probe tilt is on the same order of magnitude as the slopes of the cavity walls measured by the STM.by Jonathan B. Hopkins.S.B
Design of flexure-based motion stages for mechatronic systems via FACT
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 191-195).The aim of this thesis is to generate the knowledge required to (i) synthesize serial flexure systems and (ii) optimally place actuators using a comprehensive library of geometric shapes called freedom, actuation, and constraint spaces. These geometric shapes guide designers through the creative process of concept generation without compromising engineering rigor. Each shape rapidly conveys the mathematics of screw theory, projective geometry, and constraint-based design by visually depicting regions where constraints and actuators may be placed for synthesizing optimal flexure concepts. In this way, designers may consider every flexure concept that satisfies the desired functional requirements before selecting the final design. FACT was created to improve the design processes for small-scale flexure systems and precision machines. For instance, there is a need to create multi-axis nanopositioners for emerging three-dimensional nano-scale research/manufacturing. Through this work the following contributions were made: (1) the fifty freedom and constraint space types were found that may be used to synthesize both parallel and serial flexure concepts, (2) intermediate freedom spaces were created that help designers stack conjugated flexure elements to avoid or utilize underconstraint, (3) a twist-wrench stiffness matrix was created to model the elastomechanic behavior of flexure systems, (4) the twenty-six actuation spaces were found that help guide designers in placing actuators that minimize motion errors, and (5) a theory was created that determines the force and displacement actuator outputs for accessing a desired DOF once actuators have been placed. A serially conjugated lead screw flexure was designed using the FACT design process and a parallel flexure system was built to validate the theory of actuation described in this thesis.by Jonathan Brigham Hopkins.Ph.D
Design of parallel flexure systems via Freedom and Constraint Topologies (FACT)
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.Includes bibliographical references (p. 391-393).The aim of this thesis was to generate the knowledge required to represent the possible freedom topologies (motions of a mechanism) and the possible constraint topologies (flexural elements that guide the mechanism) in a form that designers can use to design parallel flexure systems. The framework that links these topologies enables designers to create three-dimensional, multi-axis flexure systems by using "Freedom and Constraint Topologies" (FACT). FACT embodies every possible design solution for parallel flexure systems. This information enables designers to consider every possible design and then select the design that is best suited for a specific application. FACT was created to improve the design processes for small-scale flexure systems and precision machines. For instance, there is a need to create multi-axis nanopositioners for emerging three-dimensional nano-scale research/manufacturing.(cont.) Through this work the following contributions were made: (1) twenty six unique matching pairs of freedom and constraint spaces were identified; (2) it was proven that these spaces embody all possible solutions; (3) a design process was created to guide a designer from design requirements, to freedom spaces, to constraint spaces, to mechanism designs; (4) a sub-process was created to guide designers in the selection of redundant constraints that help satisfy stiffness and symmetry requirements without altering the mechanism's kinematics; (5) mathematical expressions were created to represent the freedom and constraint spaces in a form that enables computers to identify and manipulate them. In this thesis, three case studies are provided to demonstrate the FACT design process for mechanisms of varying complexity: (1) a compliant spherical ball joint, (2) a compliant probe for a five axis STM, and (3) a compliant rotary flexure are designed. The second case study demonstrates the sub-process for selecting redundant constraints.by Jonathan Brigham Hopkins.S.M
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research