109 research outputs found

    Metástase de tumor venéreo transmissível (TVT)

    Get PDF
    O artigo não apresenta resumo

    De Novo Peroxisome Biogenesis in Penicillium Chrysogenum Is Not Dependent on the Pex11 Family Members or Pex16

    Get PDF
    We have analyzed the role of the three members of the Pex11 protein family in peroxisome formation in the filamentous fungus Penicillium chrysogenum. Two of these, Pex11 and Pex11C, are components of the peroxisomal membrane, while Pex11B is present at the endoplasmic reticulum. We show that Pex11 is a major factor involved in peroxisome proliferation. We also demonstrate that P. chrysogenum cells deleted for known peroxisome fission factors (all Pex11 family proteins and Vps1) still contain peroxisomes. Interestingly, we find that, unlike in mammals, Pex16 is not essential for peroxisome biogenesis in P. chrysogenum, as partially functional peroxisomes are present in a pex16 deletion strain. We also show that Pex16 is not involved in de novo biogenesis of peroxisomes, as peroxisomes were still present in quadruple Δpex11 Δpex11B Δpex11C Δpex16 mutant cells. By contrast, pex3 deletion in P. chrysogenum led to cells devoid of peroxisomes, suggesting that Pex3 may function independently of Pex16. Finally, we demonstrate that the presence of intact peroxisomes is important for the efficiency of ß-lactam antibiotics production by P. chrysogenum. Remarkably, distinct from earlier results with low penicillin producing laboratory strains, upregulation of peroxisome numbers in a high producing P. chrysogenum strain had no significant effect on penicillin production

    Correlation of pulse wave velocity with left ventricular mass in patients with hypertension once blood pressure has been normalized

    Get PDF
    Vascular stiffness has been proposed as a simple method to assess arterial loading conditions of the heart which induce left ventricular hypertrophy (LVH). There is some controversy as to whether the relationship of vascular stiffness to LVH is independent of blood pressure, and which measurement of arterial stiffness, augmentation index (AI) or pulse wave velocity (PWV) is best. Carotid pulse wave contor and pulse wave velocity of patients (n=20) with hypertension whose blood pressure (BP) was under control (<140/90 mmHg) with antihypertensive drug treatment medications, and without valvular heart disease, were measured. Left ventricular mass, calculated from 2D echocardiogram, was adjusted for body size using two different methods: body surface area and height. There was a significant (P<0.05) linear correlation between LV mass index and pulse wave velocity. This was not explained by BP level or lower LV mass in women, as there was no significant difference in PWV according to gender (1140.1+67.8 vs 1110.6+57.7 cm/s). In contrast to PWV, there was no significant correlation between LV mass and AI. In summary, these data suggest that aortic vascular stiffness is an indicator of LV mass even when blood pressure is controlled to less than 140/90 mmHg in hypertensive patients. The data further suggest that PWV is a better proxy or surrogate marker for LV mass than AI and the measurement of PWV may be useful as a rapid and less expensive assessment of the presence of LVH in this patient population

    The making of a mammalian peroxisome, version 2.0: mitochondria get into the mix

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this record.A recent report from the laboratory of Heidi McBride (McGill University) presents a role for mitochondria in the de novo biogenesis of peroxisomes in mammalian cells (1). Peroxisomes are essential organelles responsible for a wide variety of biochemical functions, from the generation of bile, to plasmalogen synthesis, reduction of peroxides, and the oxidation of very long chain fatty acids (2). Like mitochondria, peroxisomes proliferate primarily through growth and division of pre-existing peroxisomes (3-6). However, unlike mitochondria, peroxisomes do not fuse (5,7); further, and perhaps most importantly, they can also be born de novo, a process thought to occur through the generation of pre-peroxisomal vesicles that originate from the endoplasmic reticulum (reviewed in (8,9). De novo peroxisome biogenesis has been extensively studies in yeast, with a major focus on the role of the ER in this process. Comprehensive studies in mammalian cells are, however, scarce (5,10-12). By exploiting patient cells lacking mature peroxisomes, Sugiura et al. (1) now assign a role to ER and mitochondria in de novo mammalian peroxisome biogenesis by showing that the formation of immature preperoxisomes occurs through the fusion of Pex3- / Pex14-containing mitochondriaderived vesicles with Pex16-containing ER-derived vesicles

    Crustal structure of the propagating TAMMAR ridge segment on the Mid-Atlantic Ridge, 21.5°N

    Get PDF
    Active ridge propagation frequently occurs along spreading ridges and profoundly affects ridge crest segmentation over time. The mechanisms controlling ridge propagation, however, are poorly understood. At the slow spreading Mid-Atlantic Ridge at 21.5°N a seismic refraction and wide-angle reflection profile surveyed the crustal structure along a segment controlled by rapid ridge propagation. Tomographic traveltime inversion of seismic data suggests that the crustal structure along the ridge axis is controlled by melt supply; thus, crust is thickest, 8 km, at the domed segment center and decreases in thickness toward both segment ends. However, thicker crust is formed in the direction of ridge propagation, suggesting that melt is preferentially transferred toward the propagating ridge tip. Further, while seismic layer 2 remains constant along axis, seismic layer 3 shows profound changes in thickness, governing variations in total crustal thickness. This feature supports mantle upwelling at the segment center. Thus, fluid basaltic melt is redistributed easily laterally, while more viscose gabbroic melt tends to crystallize and accrete nearer to the locus of melt supply. The onset of propagation seems to have coincided with the formation of thicker crust, suggesting that propagation initiation might be due to changes in the melt supply. After a rapid initiation a continuous process of propagation was established. The propagation rate seems to be controlled by the amount of magma that reaches the segment ends. The strength of upwelling may govern the evolution of ridge segments and hence ultimately controls the propagation length

    Drosophila Carrying Pex3 or Pex16 Mutations Are Models of Zellweger Syndrome That Reflect Its Symptoms Associated with the Absence of Peroxisomes

    Get PDF
    The peroxisome biogenesis disorders (PBDs) are currently difficult-to-treat multiple-organ dysfunction disorders that result from the defective biogenesis of peroxisomes. Genes encoding Peroxins, which are required for peroxisome biogenesis or functions, are known causative genes of PBDs. The human peroxin genes PEX3 or PEX16 are required for peroxisomal membrane protein targeting, and their mutations cause Zellweger syndrome, a class of PBDs. Lack of understanding about the pathogenesis of Zellweger syndrome has hindered the development of effective treatments. Here, we developed potential Drosophila models for Zellweger syndrome, in which the Drosophila pex3 or pex16 gene was disrupted. As found in Zellweger syndrome patients, peroxisomes were not observed in the homozygous Drosophila pex3 mutant, which was larval lethal. However, the pex16 homozygote lacking its maternal contribution was viable and still maintained a small number of peroxisome-like granules, even though PEX16 is essential for the biosynthesis of peroxisomes in humans. These results suggest that the requirements for pex3 and pex16 in peroxisome biosynthesis in Drosophila are different, and the role of PEX16 orthologs may have diverged between mammals and Drosophila. The phenotypes of our Zellweger syndrome model flies, such as larval lethality in pex3, and reduced size, shortened longevity, locomotion defects, and abnormal lipid metabolisms in pex16, were reminiscent of symptoms of this disorder, although the Drosophila pex16 mutant does not recapitulate the infant death of Zellweger syndrome. Furthermore, pex16 mutants showed male-specific sterility that resulted from the arrest of spermatocyte maturation. pex16 expressed in somatic cyst cells but not germline cells had an essential role in the maturation of male germline cells, suggesting that peroxisome-dependent signals in somatic cyst cells could contribute to the progression of male germ-cell maturation. These potential Drosophila models for Zellweger syndrome should contribute to our understanding of its pathology

    Peroxynitrite mediates programmed cell death both in papillar cells and in self-incompatible pollen in the olive (Olea europaea L.)

    Get PDF
    Programmed cell death (PCD) has been found to be induced after pollination both in papillar cells and in self-incompatible pollen in the olive (Olea europaea L.). Reactive oxygen species (ROS) and nitric oxide (NO) are known to be produced in the pistil and pollen during pollination but their contribution to PCD has so far remained elusive. The possible role of ROS and NO was investigated in olive pollen–pistil interaction during free and controlled pollination and it was found that bidirectional interaction appears to exist between the pollen and the stigma, which seems to regulate ROS and NO production. Biochemical evidence strongly suggesting that both O2˙− and NO are essential for triggering PCD in self-incompatibility processes was also obtained. It was observed for the first time that peroxynitrite, a powerful oxidizing and nitrating agent generated during a rapid reaction between O2˙− and NO, is produced during pollination and that this is related to an increase in protein nitration which, in turn, is strongly associated with PCD. It may be concluded that peroxynitrite mediates PCD during pollen–pistil interaction in Olea europaea L. both in self-incompatible pollen and papillar cells
    corecore