514 research outputs found

    ROS-mediated abiotic stress-induced programmed cell death in plants

    Get PDF
    During the course of their ontogenesis, plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD). This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS) which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help to develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process

    Hydrogen peroxide as a signal controlling plant programmed cell death

    Get PDF
    Hydrogen peroxide (H2O2) has established itself as a key player in stress and programmed cell death responses, but little is known about the signaling pathways leading from H2O2 to programmed cell death in plants. Recently, identification of key regulatory mutants and near-full genome coverage microarray analysis of H2O2-induced cell death have begun to unravel the complexity of the H2O2 network. This review also describes a novel link between H2O2 and sphingolipids, two signals that can interplay and regulate plant cell death

    An extensive microarray analysis of AAL-toxin-induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants

    Get PDF
    A T-DNA knockout of the Arabidopsis homologue of the tomato disease resistance gene Asc was obtained. The asc gene renders plants sensitive to programmed cell death (PCD) triggered by the fungal AAL toxin. To obtain more insights into the nature of AAL-toxin-induced cell death and to identify genes of potential importance for PCD, we carried out transcription profiling of AAL-toxin-induced cell death in this knockout with an oligonucleotide array representing 21,500 Arabidopsis genes. Genes responsive to reactive oxygen species (ROS) and ethylene were among the earliest to be upregulated, suggesting that an oxidative burst and production of ethylene played a role in the activation of the cell death. This notion was corroborated by induction of several genes encoding ROS-generating proteins, including a respiratory burst oxidase and germin oxalate oxidase. Cytochemical studies confirmed the oxidative burst and, in addition, showed synthesis of callose, a feature of the hypersensitive response. A diverse group of transcription factors was also induced. These events were followed by repression of most of the auxin-regulated genes known to be involved in growth and developmental responses. All photosynthesis-related genes were repressed. Blocking the synthesis of ethylene or NO significantly compromised cell death. In addition, we identified a heterogeneous group of early-induced genes, some of them never before associated with PCD. The group of early-induced genes included a number of proteases that were previously implicated in developmentally regulated types of PCD, suggesting a more principal role for these proteases in the PCD process. These findings provide new insights into the molecular mechanisms of plant PCD

    Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis

    Get PDF
    Reactive oxygen species ( ROS) are key players in the regulation of plant development, stress responses, and programmed cell death. Previous studies indicated that depending on the type of ROS ( hydrogen peroxide, superoxide, or singlet oxygen) or its subcellular production site ( plastidic, cytosolic, peroxisomal, or apoplastic), a different physiological, biochemical, and molecular response is provoked. We used transcriptome data generated from ROS-related microarray experiments to assess the specificity of ROS-driven transcript expression. Data sets obtained by exogenous application of oxidative stress-causing agents ( methyl viologen, Alternaria alternata toxin, 3-aminotriazole, and ozone) and from a mutant ( fluorescent) and transgenic plants, in which the activity of an individual antioxidant enzyme was perturbed ( catalase, cytosolic ascorbate peroxidase, and copper/zinc superoxide dismutase), were compared. In total, the abundance of nearly 26,000 transcripts of Arabidopsis ( Arabidopsis thaliana) was monitored in response to different ROS. Overall, 8,056, 5,312, and 3,925 transcripts showed at least a 3-, 4-, or 5- fold change in expression, respectively. In addition to marker transcripts that were specifically regulated by hydrogen peroxide, superoxide, or singlet oxygen, several transcripts were identified as general oxidative stress response markers because their steady-state levels were at least 5- fold elevated in most experiments. We also assessed the expression characteristics of all annotated transcription factors and inferred new candidate regulatory transcripts that could be responsible for orchestrating the specific transcriptomic signatures triggered by different ROS. Our analysis provides a framework that will assist future efforts to address the impact of ROS signals within environmental stress conditions and elucidate the molecular mechanisms of the oxidative stress response in plants

    Potential risks of iatrogenic complications of nerve conduction studies (NCS) and electromyography (EMG)

    Get PDF
    AbstractNerve conduction and electromyography studies are generally well tolerated and pose little risk to patients of serious adverse events in the hands of a well-trained competent practitioner. However, some patients and certain examinations do carry a higher risk of potential complications. It is good medical practice to inform patients of any risks, their potential severity and relative frequency. In order to obtain informed consent a dialogue should take place about the nature, purpose and effects of the studies, so patients can decide if they wish to undergo the proposed investigation. In this educational review we identify those procedures and patients at risk, and provide pragmatic practice recommendations for managing these material risks

    Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes

    Get PDF
    BACKGROUND: Insecticidal toxins from Bacillus thuringiensis bind to receptors on midgut epithelial cells of susceptible insect larvae. Aminopeptidases N (APNs) from several insect species have been shown to be putative receptors for these toxins. Here we report the cloning and expression analysis of four APN cDNAs from Spodoptera exigua. RESULTS: Suppression Subtractive Hybridization (SSH) was used to construct cDNA libraries of genes that are up-and down-regulated in the midgut of last instar larvae of beet armyworm, S. exigua exposed to B. thuringiensis Cry1Ca toxin. Among the clones from the SSH libraries, cDNA fragments coding for two different APNs were obtained (APN2 and APN4). A similar procedure was employed to compare mRNA differences between susceptible and Cry1Ca resistant S. exigua. Among the clones from this last comparison, cDNA fragments belonging to a third APN (APN1) were detected. Using sequences obtained from the three APN cDNA fragments and degenerate primers for a fourth APN (APN3), the full length sequences of four S. exigua APN cDNAs were obtained. Northern blot analysis of expression of the four APNs showed complete absence of APN1 expression in the resistant insects, while the other three APNs showed similar expression levels in the resistant and susceptible insects. CONCLUSION: We have cloned and characterized four different midgut APN cDNAs from S. exigua. Expression analysis revealed the lack of expression of one of these APNs in the larvae of a Cry1Ca-resistant colony. Combined with previous evidence that shows the importance of APN in the mode of action of B. thuringiensis toxins, these results suggest that the lack of APN1 expression plays a role in the resistance to Cry1Ca in this S. exigua colony

    Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants

    Get PDF
    Abiotic stresses, including drought, salinity, extreme temperature, and pollutants, are the main cause of crop losses worldwide. Novel climate-adapted crops and stress tolerance-enhancing compounds are needed increasingly to counteract the negative effects of unfavorable stressful environments. A number of natural products and synthetic chemicals can protect model and crop plants against abiotic stresses through the ectopic induction of molecular and physiological defense mechanisms, a process known as molecular priming. In addition to their stress-protective effect, some of these compounds can also stimulate plant growth. Here, we provide an overview of the known physiological and molecular mechanisms behind the compounds that induce molecular priming, together with a survey of approaches to discover and functionally study new stress-alleviating chemicals

    A deep learning-based model for plant lesion segmentation, subtype identification, and survival probability estimation

    Get PDF
    Plants are the primary source of food for world’s population. Diseases in plants can cause yield loss, which can be mitigated by continual monitoring. Monitoring plant diseases manually is difficult and prone to errors. Using computer vision and artificial intelligence (AI) for the early identification of plant illnesses can prevent the negative consequences of diseases at the very beginning and overcome the limitations of continuous manual monitoring. The research focuses on the development of an automatic system capable of performing the segmentation of leaf lesions and the detection of disease without requiring human intervention. To get lesion region segmentation, we propose a context-aware 3D Convolutional Neural Network (CNN) model based on CANet architecture that considers the ambiguity of plant lesion placement in the plant leaf image subregions. A Deep CNN is employed to recognize the subtype of leaf lesion using the segmented lesion area. Finally, the plant’s survival is predicted using a hybrid method combining CNN and Linear Regression. To evaluate the efficacy and effectiveness of our proposed plant disease detection scheme and survival prediction, we utilized the Plant Village Benchmark Dataset, which is composed of several photos of plant leaves affected by a certain disease. Using the DICE and IoU matrices, the segmentation model performance for plant leaf lesion segmentation is evaluated. The proposed lesion segmentation model achieved an average accuracy of 92% with an IoU of 90%. In comparison, the lesion subtype recognition model achieves accuracies of 91.11%, 93.01 and 99.04 for pepper, potato and tomato plants. The higher accuracy of the proposed model indicates that it can be utilized for real-time disease detection in unmanned aerial vehicles and offline to offer crop health updates and reduce the risk of low yield
    • …
    corecore