292 research outputs found

    Cell Cycle

    Get PDF

    Conversion of the Kunitz-type module of collagen VI into a highly active trypsin inhibitor by site-directed mutagenesis.

    No full text
    The recombinant Kunitz protease inhibitor module (domain C5) of human collagen α3(VI) chain was previously shown to lack inhibitory activity for proteases with trypsin-like specificity and some other proteases. We have now prepared mutants in the binding loop region including the P1′ site (D2889 → A), the P2′ site (F2890 → R) and the P3 site (T2886 → P) and in a more remote region (W2907 → V) either as individual substitutions or combinations of them. These mutants were analyzed for their kinetics of binding to trypsin by surface plasmon resonance and for their capacity to inhibit various proteases. Single substitutions (D → A, T → P, W → V) showed an effect only for D → A which bound to trypsin with Kd= 0.25 μM. A 25–100-fold increase in affinity was observed for the double mutants T → P/D → A and F → R/D → A and approached the affinity of aprotinin (Kd≈0.01 nM) in two different triple mutants. These affinities correlated well with the inhibitory capacities of the mutants for trypsin in the cleavage of a large protein and a small peptide substrate. A similar but not completely identical improvement in inhibitory capacity was also observed for leucocyte elastase but not for thrombin. These data could be interpreted in terms of steric interferences or lack of hydrogen bonding of a few critical residues based on three-dimensional structures available for the C5 domain

    Structure and multiple conformations of the Kunitz-type domain from human type VI collagen alpha3(VI) chain in solution.

    Get PDF
    BACKGROUND: The Kunitz-type inhibitor motif is found at the C terminus of the human collagen alpha3(VI) chain. This 76-residue module (domain C5) was prepared in recombinant form and showed high stability against proteases; however, it lacked any inhibitory activity against trypsin, thrombin, kallikrein and several other proteases. We have undertaken the determination of the three-dimensional (3D) structure of domain C5 in solution, by nuclear magnetic resonance (NMR), in order to establish the structural basis for the properties of this protein. RESULTS: The 7 N-terminal and 12 C-terminal residues of domain C5 are disordered in the solution structure. The 55-residue core, which shows high homology to bovine pancreatic trypsin inhibitor, retains the characteristic fold of all members of the Kunitz-type inhibitor family. 24 residues of this main structural body show more than one resonance, symptomatic of multiple conformations slowly exchanging on the NMR time scale. In addition, significant proton chemical exchange line broadening is observed for residues in the vicinity of the disulfide bridge between residues 20 and 44: this indicates interconversion, on the micro- to millisecond time scale, between multiple conformations. CONCLUSION: The NMR study demonstrates that domain C5 is a highly dynamic molecule at temperatures studied (between 10 and 30 degrees C). Indeed, some 44% of the main body structure of C5 showed multiple conformations. The existence of multiple conformations was not necessarily expected in view of the conformational constraints imposed by the 3D structure of proteins as rigid as C5; it should therefore be considered in the interpretation of its structural and dynamical properties. The accessibility of the inhibitory binding loop (Gly18 [P4] to Leu25 [P4']) should be relatively unaffected by this conformational exchange and thus would not explain the unusual specificity of C5. Most serine proteinase inhibitors that, like C5, have an arginine at the P1 position inhibit trypsin; the lack of trypsin inhibition of C5 must therefore arise from the amino-acid side-chain composition of the adjoining positions in the binding loop

    Structure of interleukin 16 resembles a PDZ domain with an occluded peptide binding site.

    Get PDF
    The structure of a folded core of IL-16 is similar to that of intracellular protein modules called PDZ domains. IL-16 is thus the first extracellular protein found to have a PDZ-like fold. However, it does not exhibit normal peptide binding properties of PDZ domains. This is due to alterations of the structure at the 'PDZ-like binding site' of IL-16 (the GLGF cleft): the GLGF cleft of IL-16 is much smaller than those of PDZ-domains and is additionally blocked with a tryptophan side chain at its center. Our experiments indicate also that IL-16 nonspecifically aggregates in solution; but formation of a homo-tetrameric protein is not required, in contrast to previous suggestions, for its chemo-attractant activity

    Artificial intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research and practice

    Get PDF
    As far back as the industrial revolution, great leaps in technical innovation succeeded in transforming numerous manual tasks and processes that had been in existence for decades where humans had reached the limits of physical capacity. Artificial Intelligence (AI) offers this same transformative potential for the augmentation and potential replacement of human tasks and activities within a wide range of industrial, intellectual and social applications. The pace of change for this new AI technological age is staggering, with new breakthroughs in algorithmic machine learning and autonomous decision making engendering new opportunities for continued innovation. The impact of AI is significant, with industries ranging from: finance, retail, healthcare, manufacturing, supply chain and logistics all set to be disrupted by the onset of AI technologies. The study brings together the collective insight from a number of leading expert contributors to highlight the significant opportunities, challenges and potential research agenda posed by the rapid emergence of AI within a number of domains: technological, business and management, science and technology, government and public sector. The research offers significant and timely insight to AI technology and its impact on the future of industry and society in general

    Robust refocusing of 13C magnetization in multidimensional NMR experiments by adiabatic fast passage pulses.

    No full text
    We show that adiabatic fast passage (AFP) pulses are robust refocusing elements of transverse 13C magnetization in multidimensional NMR experiments. A pair of identical AFP pulses can refocus selected parts or a complete 13 C chemical shift range in 13C spectra. In the constant time 13C-1H HSQC, replacement of attenuated rectangular pulses by selective AFP pulses results in a sensitivity enhancement of up to a factor of 1.8. In the 3D CBCA(CO)NH the signal-to-noise ratio is increased by a factor of up to 1.6

    An adiabatic multiple spin-echo pulse sequence: removal of systematic errors due to pulse imperfections and off-resonance effects.

    No full text
    Application of AFP (adiabatic fast passage) pulses for removal of systematic errors associated with multiple spin-echo sequences is demonstrated. The adiabatic fast passage pulses facilitate minimization of cumulative pulse errors for all three components of magnetization. It is also shown that off-resonance effects present in conventional CPMG sequences which degrade image quality in magnetic resonance imaging and introduce systematic errors in measured T2 relaxation time peak amplitudes can be suppressed by introduction of AFP pulses without any degradation of overall signal intensity. The technique has been tested on the 15N spin-spin relaxation time measurements of a 110 amino acid domain of the F-actin cross-linking protein
    • …
    corecore