38 research outputs found

    Guidelines of the International Headache Society for Controlled Clinical Trials in Cluster Headache

    Get PDF
    In 1995, a committee of the International Headache Society developed and published the first edition of the Guidelines for Controlled Trials of Drugs in Cluster Headache. These have not been revised. With the emergence of new medications, neuromodulation devices and trial designs, an updated version of the International Headache Society Guidelines for Controlled Clinical Trials in Cluster Headache is warranted. Given the scarcity of evidence-based data for cluster headache therapies, the update is largely consensus-based, but takes into account lessons learned from recent trials and demands by patients. It is intended to apply to both drug and neuromodulation treatments, with specific proposals for the latter when needed. The primary objective is to propose a template for designing high quality, state-of-the-art, controlled clinical trials of acute and preventive treatments in episodic and chronic cluster headache. The recommendations should not be regarded as dogma and alternative solutions to particular methodological problems should be explored in the future and scientifically validated

    Optimizing anti-gene oligonucleotide ‘Zorro-LNA’ for improved strand invasion into duplex DNA

    Get PDF
    Zorro-LNA (Zorro) is a newly developed, oligonucleotide (ON)-based, Z-shaped construct with the potential of specific binding to each strand of duplex DNA. The first-generation Zorros are formed by two hybridized LNA/DNA mixmers (2-ON Zorros) and was hypothesized to strand invade. We have now established a method, which conclusively demonstrates that an LNA ON can strand invade into duplex DNA. To make Zorros smaller in size and easier to design, we synthesized 3′–5′–5′–3′ single-stranded Zorro-LNA (ssZorro) by using both 3′- and 5′-phosphoramidites. With ssZorro, a significantly greater extent and rate of double-strand invasion (DSI) was obtained than with conventional 2-ON Zorros. Introducing hydrophilic PEG-linkers connecting the two strands did not significantly change the rate or extent of DSI as compared to ssZorro with a nucleotide-based linker, while the longest alkyl-chain linker tested (36 carbons) resulted in a very slow DSI. The shortest alkyl-chain linker (3 carbons) did not reduce the extent of DSI of ssZorro, but significantly decreased the DSI rate. Collectively, ssZorro is smaller in size, easier to design and more efficient than conventional 2-ON Zorro in inducing DSI. Analysis of the chemical composition of the linker suggests that it could be of importance for future therapeutic considerations

    The global status of insect resistance to neonicotinoid insecticides

    Get PDF
    This document is the Accepted Manuscript version of the following article: Chris Bass, Ian Denholm, Martin S. Williamson, and Ralf Nauen, ‘The global status of insect resistance to neonicotinoid insecticides’, Pesticide Biochemistry and Physiology, Vol. 121, pp. 78-87, June 2015. The Version of Record is available online at doi: https://doi.org/10.1016/j.pestbp.2015.04.004. Published by Elsevier Copyright © 2015 Elsevier Inc.The first neonicotinoid insecticide, imidacloprid, was launched in 1991. Today this class of insecticides comprises at least seven major compounds with a market share of more than 25% of total global insecticide sales. Neonicotinoid insecticides are highly selective agonists of insect nicotinic acetylcholine receptors and provide farmers with invaluable, highly effective tools against some of the world's most destructive crop pests. These include sucking pests such as aphids, whiteflies, and planthoppers, and also some coleopteran, dipteran and lepidopteran species. Although many insect species are still successfully controlled by neonicotinoids, their popularity has imposed a mounting selection pressure for resistance, and in several species resistance has now reached levels that compromise the efficacy of these insecticides. Research to understand the molecular basis of neonicotinoid resistance has revealed both target-site and metabolic mechanisms conferring resistance. For target-site resistance, field-evolved mutations have only been characterized in two aphid species. Metabolic resistance appears much more common, with the enhanced expression of one or more cytochrome P450s frequently reported in resistant strains. Despite the current scale of resistance, neonicotinoids remain a major component of many pest control programmes, and resistance management strategies, based on mode of action rotation, are of crucial importance in preventing resistance becoming more widespread. In this review we summarize the current status of neonicotinoid resistance, the biochemical and molecular mechanisms involved, and the implications for resistance management.Peer reviewedFinal Accepted Versio

    A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity

    No full text
    The use of chemically synthesized short interfering RNAs (siRNAs) is currently the method of choice to manipulate gene expression in mammalian cell culture, yet improvements of siRNA design is expectably required for successful application in vivo. Several studies have aimed at improving siRNA performance through the introduction of chemical modifications but a direct comparison of these results is difficult. We have directly compared the effect of 21 types of chemical modifications on siRNA activity and toxicity in a total of 2160 siRNA duplexes. We demonstrate that siRNA activity is primarily enhanced by favouring the incorporation of the intended antisense strand during RNA-induced silencing complex (RISC) loading by modulation of siRNA thermodynamic asymmetry and engineering of siRNA 3-overhangs. Collectively, our results provide unique insights into the tolerance for chemical modifications and provide a simple guide to successful chemical modification of siRNAs with improved activity, stability and low toxicity

    The triple helix: 50 years later, the outcome

    Get PDF
    Triplex-forming oligonucleotides constitute an interesting DNA sequence-specific tool that can be used to target cleaving or cross-linking agents, transcription factors or nucleases to a chosen site on the DNA. They are not only used as biotechnological tools but also to induce modifications on DNA with the aim to control gene expression, such as by site-directed mutagenesis or DNA recombination. Here, we report the state of art of the triplex-based anti-gene strategy 50 years after the discovery of such a structure, and we show the importance of the actual applications and the main challenges that we still have ahead of us

    Incidence, spread and mechanisms of pyrethroid resistance in European populations of the cabbage stem flea beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae)

    No full text
    BACKGROUND:Cabbage stem flea beetle (CSFB), Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae) is a major early season pest of oilseed rape throughout Europe. Pyrethroids have been used for controlling this pest by foliar application, but in recent years control failures have occurred, particularly in Germany due to the evolution of knock-down resistance (kdr). The purpose of this study was to investigate the incidence and spread of pyrethroid resistance in CSFB collected in Germany, Denmark and the United Kingdom during 2014. The level of pyrethroid resistance was measured in adult vial tests and linked to the presence of kdr genotypes. RESULTS:Although kdr (L1014F) genotypes are present in all three countries, marked differences in pyrethroid efficacy were found in adult vial tests. Whereas Danish CSFB samples were in general susceptible to recommended label rates, those collected in the UK mostly resist such rates to some extent. Moderately resistant and susceptible samples were found in Germany. Interestingly, some of the resistant samples from the UK did not carry the kdr allele, which is in contrast to German CSFB. Pre-treatment with PBO, prior to exposure to λ-cyhalothrin suggested involvement of metabolic resistance in UK samples. CONCLUSION:Danish samples were mostly susceptible with very low resistance ratios, while most other samples showed reduced sensitivity in varying degrees. Likewise, there was a clear difference in the presence of the kdr mutation between the three countries. In the UK, the presence of kdr genotypes did not always correlate well with resistant phenotypes. This appears to be primarily conferred by a yet undisclosed, metabolic-based mechanism. Nevertheless our survey disclosed an alarming trend concerning the incidence and spread of CSFB resistance to pyrethroids, which is likely to have negative impacts on oilseed production in affected regions due to the lack of alternative modes of action for resistance management purposes
    corecore