359 research outputs found

    Age Determination of a Granite Gneiss from the Precambrian Basement of Scioto County, Ohio

    Get PDF
    Author Institution: Department of Geology and Mineralogy, The Ohio State University, Columbus, Ohio 43210 and Ohio Division of Geological Survey, Columbus, Ohio 43212Biotite and potassium feldspar from a specimen of granite gneiss from the Precambrian basement of Scioto County (Permit No. 212, Greenup Quadrangle of Green Township) have been dated by the Rb-Sr method. The model dates, calculated relative to an assumed initial 87Sr/86Sr ratio of 0.7040, are 898±40 million years (biotite) and 1242±46 million years (potassium feldspar). The dates are discordant, which suggests that the minerals gained or lost rubidium and/or strontium during an episode of metamorphism. The age of the metamorphism is estimated as 840=t42 million years, assuming that both minerals were isotopically re-equilibrated and had the same 87Sr/86Sr ratio of 0.7178± 0.0026. The model date of the biotite agrees with previous age determinations of basement rocks from Ohio and confirms the interpretation that the Grenville Province of the Canadian Precambrian Shield extends southward into Ohio

    Flash-Heating of Circumstellar Clouds by Gamma Ray Bursts

    Get PDF
    The blast-wave model for gamma-ray bursts (GRBs) has been called into question by observations of spectra from GRBs that are harder than can be produced through optically thin synchrotron emission. If GRBs originate from the collapse of massive stars, then circumstellar clouds near burst sources will be illuminated by intense gamma radiation, and the electrons in these clouds will be rapidly scattered to energies as large as several hundred keV. Low-energy photons that subsequently pass through the hot plasma will be scattered to higher energies, hardening the intrisic spectrum. This effect resolves the "line-of-death" objection to the synchrotron shock model. Illuminated clouds near GRBs will form relativistic plasmas containing large numbers of electron-positron pairs that can be detected within ~ 1-2 days of the explosion before expanding and dissipating. Localized regions of pair annihilation radiation in the Galaxy would reveal past GRB explosions.Comment: 9 pages, 1 figure, submitted to ApJ Letter

    The LEECH Exoplanet Imaging Survey: Limits on Planet Occurrence Rates Under Conservative Assumptions

    Get PDF
    We present the results of the largest LL^{\prime} (3.8 μ3.8~\mum) direct imaging survey for exoplanets to date, the Large Binocular Telescope Interferometer (LBTI) Exozodi Exoplanet Common Hunt (LEECH). We observed 98 stars with spectral types from B to M. Cool planets emit a larger share of their flux in LL^{\prime} compared to shorter wavelengths, affording LEECH an advantage in detecting low-mass, old, and cold-start giant planets. We emphasize proximity over youth in our target selection, probing physical separations smaller than other direct imaging surveys. For FGK stars, LEECH outperforms many previous studies, placing tighter constraints on the hot-start planet occurrence frequency interior to 20\sim20 au. For less luminous, cold-start planets, LEECH provides the best constraints on giant-planet frequency interior to 20\sim20 au around FGK stars. Direct imaging survey results depend sensitively on both the choice of evolutionary model (e.g., hot- or cold-start) and assumptions (explicit or implicit) about the shape of the underlying planet distribution, in particular its radial extent. Artificially low limits on the planet occurrence frequency can be derived when the shape of the planet distribution is assumed to extend to very large separations, well beyond typical protoplanetary dust-disk radii (50\lesssim50 au), and when hot-start models are used exclusively. We place a conservative upper limit on the planet occurrence frequency using cold-start models and planetary population distributions that do not extend beyond typical protoplanetary dust-disk radii. We find that 90%\lesssim90\% of FGK systems can host a 7 to 10 MJupM_{\mathrm{Jup}} planet from 5 to 50 au. This limit leaves open the possibility that planets in this range are common.Comment: 31 pages, 13 figures, accepted to A

    Search for CP violation in D+KK+π+D^{+} \to K^{-}K^{+}\pi^{+} decays

    Get PDF
    A model-independent search for direct CP violation in the Cabibbo suppressed decay D+KK+π+D^+ \to K^- K^+\pi^+ in a sample of approximately 370,000 decays is carried out. The data were collected by the LHCb experiment in 2010 and correspond to an integrated luminosity of 35 pb1^{-1}. The normalized Dalitz plot distributions for D+D^+ and DD^- are compared using four different binning schemes that are sensitive to different manifestations of CP violation. No evidence for CP asymmetry is found.Comment: 13 pages, 8 figures, submitted to Phys. Rev.

    Envelope Determinants of Equine Lentiviral Vaccine Protection

    Get PDF
    Lentiviral envelope (Env) antigenic variation and associated immune evasion present major obstacles to vaccine development. The concept that Env is a critical determinant for vaccine efficacy is well accepted, however defined correlates of protection associated with Env variation have yet to be determined. We reported an attenuated equine infectious anemia virus (EIAV) vaccine study that directly examined the effect of lentiviral Env sequence variation on vaccine efficacy. The study identified a significant, inverse, linear correlation between vaccine efficacy and increasing divergence of the challenge virus Env gp90 protein compared to the vaccine virus gp90. The report demonstrated approximately 100% protection of immunized ponies from disease after challenge by virus with a homologous gp90 (EV0), and roughly 40% protection against challenge by virus (EV13) with a gp90 13% divergent from the vaccine strain. In the current study we examine whether the protection observed when challenging with the EV0 strain could be conferred to animals via chimeric challenge viruses between the EV0 and EV13 strains, allowing for mapping of protection to specific Env sequences. Viruses containing the EV13 proviral backbone and selected domains of the EV0 gp90 were constructed and in vitro and in vivo infectivity examined. Vaccine efficacy studies indicated that homology between the vaccine strain gp90 and the N-terminus of the challenge strain gp90 was capable of inducing immunity that resulted in significantly lower levels of post-challenge virus and significantly delayed the onset of disease. However, a homologous N-terminal region alone inserted in the EV13 backbone could not impart the 100% protection observed with the EV0 strain. Data presented here denote the complicated and potentially contradictory relationship between in vitro virulence and in vivo pathogenicity. The study highlights the importance of structural conformation for immunogens and emphasizes the need for antibody binding, not neutralizing, assays that correlate with vaccine protection. © 2013 Craigo et al

    First observation of the decay Bˉs0D0K0\bar{B}^0_s \to D^0 K^{*0} and a measurement of the ratio of branching fractions B(Bˉs0D0K0)B(Bˉ0D0ρ0)\frac{{\cal B}(\bar{B}^0_s \to D^0 K^{*0})}{{\cal B}(\bar{B}^0 \to D^0 \rho^0)}

    Get PDF
    The first observation of the decay Bˉs0D0K0\bar{B}^0_s \to D^0 K^{*0} using pppp data collected by the LHCb detector at a centre-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 36 pb1^{-1}, is reported. A signal of 34.4±6.834.4 \pm 6.8 events is obtained and the absence of signal is rejected with a statistical significance of more than nine standard deviations. The Bˉs0D0K0\bar{B}^0_s \to D^0 K^{*0} branching fraction is measured relative to that of Bˉ0D0ρ0\bar{B}^0 \to D^0 \rho^0: B(Bˉs0D0K0)B(Bˉ0D0ρ0)=1.48±0.34±0.15±0.12\frac{{\cal B}(\bar{B}^0_s \to D^0 K^{*0})}{{\cal B}(\bar{B}^0 \to D^0 \rho^0)} = 1.48 \pm 0.34 \pm 0.15 \pm 0.12, where the first uncertainty is statistical, the second systematic and the third is due to the uncertainty on the ratio of the B0B^0 and Bs0B^0_s hadronisation fractions.Comment: 10 pages, 3 figures, submitted to Phys. Lett. B; ISSN 0370-269

    First observation of Bs -> D_{s2}^{*+} X mu nu decays

    Get PDF
    Using data collected with the LHCb detector in proton-proton collisions at a centre-of-mass energy of 7 TeV, the semileptonic decays Bs -> Ds+ X mu nu and Bs -> D0 K+ X mu nu are detected. Two structures are observed in the D0 K+ mass spectrum at masses consistent with the known D^+_{s1}(2536) and $D^{*+}_{s2}(2573) mesons. The measured branching fractions relative to the total Bs semileptonic rate are B(Bs -> D_{s2}^{*+} X mu nu)/B(Bs -> X mu nu)= (3.3\pm 1.0\pm 0.4)%, and B(Bs -> D_{s1}^+ X munu)/B(Bs -> X mu nu)= (5.4\pm 1.2\pm 0.5)%, where the first uncertainty is statistical and the second is systematic. This is the first observation of the D_{s2}^{*+} state in Bs decays; we also measure its mass and width.Comment: 8 pages 2 figures. Published in Physics Letters

    Distribution of recycled crust within the upper mantle : insights from the oxygen isotope composition of MORB from the Australian-Antarctic Discordance

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q12004, doi:10.1029/2009GC002728Geochemical heterogeneity within the mantle has long been recognized through the diversity of trace element and radiogenic isotopic compositions of mantle-derived rocks, yet the specific origin, abundance, and distribution of enriched material within the mantle have been difficult to quantify. In particular, the origin of the distinctive geochemical characteristics of Indian mantle has been debated for decades. We present new laser fluorination oxygen isotope measurements of mid-ocean ridge basalt from the Australian-Antarctic Discordance (AAD), an area where a particularly abrupt transition occurs between Pacific-type mid-ocean ridge basalts (MORB) and Atlantic-type MORB. These data show no distinction in average δ18O between Pacific- and Atlantic-type MORB, indicating that the origin of Indian-type mantle cannot be attributed to the presence of pelagic sediment. The combined radiogenic isotope, δ18O, and trace element characteristics of Indian-type MORB at the AAD are consistent with contamination of the Indian upper mantle by lower crustal material. We also present a compilation of available laser fluorination δ18O data for MORB and use these data to evaluate the nature and percentage of enriched material within the upper mantle globally. Data for each ocean basin fit a normal distribution, with indistinguishable means and standard deviations, implying that the variation in δ18O of MORB reflects a stochastic process that operates similarly across all ocean basins. Monte Carlo simulations show that the mean and standard deviation of the MORB data are robust indicators of the mean and standard deviation of the parent distribution of data. Further, although some skewness in the data cannot be ruled out, Monte Carlo results are most consistent with a normal parent distribution. This similarity in characteristics of the δ18O data between ocean basins, together with correlations of δ18O with radiogenic isotope and trace element characteristics of subsets of the data, suggest that the upper mantle globally contains an average of ∼5–10% recycled crustal material and that the depleted mantle in the absence of this component would have δ18O of ∼5.25‰. The Monte Carlo simulations also suggest that additional oxygen isotope data may be used in the future to test the ability of geodynamical models to predict the physical distribution of enriched domains within the upper mantle

    Scapinin, the Protein Phosphatase 1 Binding Protein, Enhances Cell Spreading and Motility by Interacting with the Actin Cytoskeleton

    Get PDF
    Copyright (c) 2009 Sagara et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Scapinin, also named phactr3, is an actin and protein phosphatase 1 (PP1) binding protein, which is expressed in the adult brain and some tumor cells. At present, the role(s) of scapinin in the brain and tumors are poorly understood. We show that the RPEL-repeat domain of scapinin, which is responsible for its direct interaction with actin, inhibits actin polymerization in vitro. Next, we established a Hela cell line, where scapinin expression was induced by tetracycline. In these cells, expression of scapinin stimulated cell spreading and motility. Scapinin was colocalized with actin at the edge of spreading cells. To explore the roles of the RPEL-repeat and PP1-binding domains, we expressed wild-type and mutant scapinins as fusion proteins with green fluorescence protein (GFP) in Cos7 cells. Expression of GFP-scapinin (wild type) also stimulated cell spreading, but mutation in the RPEL-repeat domain abolished both the actin binding and the cell spreading activity. PP1-binding deficient mutants strongly induced cell retraction. Long and branched cytoplasmic processes were developed during the cell retraction. These results suggest that scapinin enhances cell spreading and motility through direct interaction with actin and that PP1 plays a regulatory role in scapinin-induced morphological changes.ArticlePLOS ONE. 4(1):e4247 (2009)journal articl
    corecore