3 research outputs found

    Search for supersymmetry in pp collisions at √s = 7 TeV in events with a single lepton, jets, and missing transverse momentum

    Get PDF
    Results are reported from a search for new physics processes in events containing a single isolated high-transverse-momentum lepton (electron or muon), energetic jets, and large missing transverse momentum. The analysis is based on a 4.98 fb-1 sample of proton-proton collisions at a center-of-mass energy of 7 TeV, obtained with the CMS detector at the LHC. Three separate background estimation methods, each relying primarily on control samples in the data, are applied to a range of signal regions, providing complementary approaches for estimating the background yields. The observed yields are consistent with the predicted standard model backgrounds. The results are interpreted in terms of limits on the parameter space for the constrained minimal supersymmetric extension of the standard model, as well as on cross sections for simplified models, which provide a generic description of the production and decay of new particles in specific, topology based final states. © 2013 CERN for the benefit of the CMS collaboration.0info:eu-repo/semantics/publishe

    Measurement of the inclusive W and Z production cross sections in pp collisions at s =\sqrt{s}\ = 7 TeV with the CMS experiment

    Get PDF
    This is the Pre-Print version of the Article - Copyright @ 2011 Springer VerlagMeasurements of inclusive W and Z boson production cross sections in pp collisions at sqrt(s)=7 TeV are presented, based on 2.9 inverse picobarns of data recorded by the CMS detector at the LHC. The measurements, performed in the electron and muon decay channels, are combined to give sigma(pp to WX) times B(W to muon or electron + neutrino) = 9.95 \pm 0.07(stat.) \pm 0.28(syst.) \pm 1.09(lumi.) nb and sigma(pp to ZX) times B(Z to oppositely charged muon or electron pairs) = 0.931 \pm 0.026(stat.) \pm 0.023(syst.) \pm 0.102(lumi.) nb. Theoretical predictions, calculated at the next-to-next-to-leading order in QCD using recent parton distribution functions, are in agreement with the measured cross sections. Ratios of cross sections, which incur an experimental systematic uncertainty of less than 4%, are also reported
    corecore