13 research outputs found

    Exploratory analysis of sprint force-velocity characteristics, kinematics and performance across a periodized training year : A case study of two national level sprint athletes

    Get PDF
    Objective: This case study aimed to explore changes to sprint force-velocity characteristics across a periodized training year (45 weeks) and the influence on sprint kinematics and performance in national level 100-meter athletes. Force-velocity characteristics have been shown to differentiate between performance levels in sprint athletes, yet limited information exists describing how characteristics change across a season and impact sprint performance, therefore warranting further research. Methods: Two male national level 100-meter athletes (Athlete 1: 22 years, 1.83 m, 81.1 kg, 100 m time: 10.47 s; Athlete 2: 19 years, 1.82 cm, 75.3 kg, 100 m time: 10.81 s) completed 12 and 11 force-velocity assessments, respectively, using electronic timing gates. Sprint mechanical characteristics were derived from 30-meter maximal sprint efforts using split times (i.e., 0–10 m, 0–20 m, 0–30 m) whereas step kinematics were established from 100-meter competition performance using video analysis. Results: Between the preparation (PREP) and competition (COMP) phase, Athlete 1 showed significantly large within-athlete effects for relative maximal power (PMAX), theoretical maximal velocity (v0), maximum ratio of force (RFMAX), maximal velocity (VMAX), and split time from 0 to 20 m and 0 to 30 m (−1.70 ≤ ES ≥ 1.92, p ≤ 0.05). Athlete 2 reported significant differences with large effects for relative maximal force (F0) and RFMAX only (ES: ≤ −1.46, p ≤ 0.04). In the PREP phase, both athletes reported almost perfect correlations between F0, PMAX and 0–20 m (r = −0.99, p ≤ 0.01), however in the COMP phase, the relationships between mechanical characteristics and split times were more individual. Competition performance in the 100-meter sprint (10.64 ± 0.24 s) showed a greater reliance on step length (r ≥ −0.72, p ≤ 0.001) than step frequency to achieve faster performances. The minimal detectable change (%) across mechanical variables ranged from 1.3 to 10.0% while spatio-temporal variables were much lower, from 0.94 to 1.48%, with Athlete 1 showing a higher ‘true change’ in performance across the season compared to Athlete 2. Conclusions: The estimated sprint force-velocity data collected across a training year may provide insight to practitioners about the underpinning mechanical characteristics which affect sprint performance during specific phases of training, plus how a periodized training design may enhance sprint force-velocity characteristics and performance outcomes.publishedVersio

    The genetic architecture of type 2 diabetes

    Get PDF
    The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes

    The costs of human-induced evolution in an agricultural system

    Get PDF
    Pesticides have underpinned significant improvements in global food security, albeit with associated environmental costs. Currently, the yield benefits of pesticides are threatened as overuse has led to wide-scale evolution of resistance. Yet despite this threat, there are no large-scale estimates of crop yield losses or economic costs due to resistance. Here, we combine national-scale density and resistance data for the weed Alopecurus myosuroides (black-grass) with crop yield maps and a new economic model to estimate that the annual cost of resistance in England is £0.4bn in lost gross profit (2014 prices), and annual wheat yield loss due to resistance is 0.8 million tonnes. A total loss of herbicide control against black-grass would cost £1bn and 3.4 million tonnes of lost wheat yield annually. Worldwide, there are 253 herbicide-resistant weeds, so the global impact of resistance could be enormous. Our research provides an urgent case for national-scale planning to combat further evolution of resistance, and an incentive for policies focused on increasing yields through more sustainable food-production systems rather than relying so heavily on herbicides

    Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus

    Get PDF

    The genetic architecture of type 2 diabetes

    No full text
    The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes

    Data Descriptor : Sequence data and association statistics from 12,940 type 2 diabetes cases and controls

    Get PDF
    To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (&gt; 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.Erratum in: Scientific Data, volume 5, Article number: 180002, 2018Doi:10.1038/sdata.2018.2</p

    The genetic architecture of type 2 diabetes.

    Get PDF
    The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes
    corecore