68 research outputs found

    Deep sea tests of a prototype of the KM3NeT digital optical module

    Get PDF
    The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deepwaters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same (40)Kdecay and the localisation of bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions

    Letter of intent for KM3NeT 2.0

    Get PDF

    Letter of intent for KM3NeT 2.0

    Get PDF
    The main objectives of the KM3NeT Collaboration are ( i ) the discovery and subsequent observation of high-energy neutrino sources in the Universe and ( ii ) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: ( 1 ) the high- energy astrophysical neutrino signal reported by IceCube and ( 2 ) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure con- sisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the syner- gistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon ( France ) , Capo Passero ( Sicily, Italy ) and Pylos ( Peloponnese, Greece ) . The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three- dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely con fi gured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary fi eld of view, including the galactic plane. One building block will be densely con fi gured to precisely measure atmospheric neutrino oscillations. Original content from this work may be used under the ter

    Management of occlusal caries

    Get PDF
    Contains fulltext : 85861.pdf (publisher's version ) (Open Access)Radboud Universiteit Nijmegen, 25 maart 2011Promotores : Truin, G.J., Huysmans, M.C.D.N.J.M. Co-promotores : Opdam, N.J.M., Frencken, J.E.F.M.131 p

    [Sealing of pits and fissures]

    No full text
    Item does not contain fulltextSealing of pits and fissures depends on patient- and tooth factors. Prevention of occlusal carious is indicated for children with a high caries risk and especially when the morphology makes teeth more susceptible for developing caries (deep pits and fissures). Good occlusal caries diagnosis is difficult and a golden standard does not exist. When sealing of pits and fissures is indicated a preventive or a therapeutic approach can be chosen. A generally accepted guideline for sealing is still missing. Every approach has its advantages and disadvantages and depends on the individual operator
    • 

    corecore