21 research outputs found

    Self-Reported Cognitive Function and Mental Health Diagnoses among Former Professional American-Style Football Players

    Get PDF
    Clinical practice strongly relies on patients' self-report. Former professional American-style football players are hesitant to seek help for mental health problems, but may be more willing to report cognitive symptoms. We sought to assess the association between cognitive symptoms and diagnosed mental health problems and quality of life among a cohort of former professional players. In a cross-sectional design, we assessed self-reported cognitive function using items from the Quality of Life in Neurological Disorders (Neuro-QOL) Item Bank. We then compared mental health diagnoses and quality of life, assessed by items from the Patient-Reported Outcome Measurement Information System (PROMIS ®), between former professional players reporting daily problems in cognitive function and former players not reporting daily cognitive problems. Of the 3758 former professional players included in the analysis, 40.0% reported daily problems due to cognitive dysfunction. Former players who reported daily cognitive problems were more likely to also report depression (18.0% vs. 3.3%, odds ratio [OR] = 6.42, 95% confidence interval [CI] [4.90-8.40]) and anxiety (19.1% vs. 4.3%, OR = 5.29, 95% CI [4.14-6.75]) than those without daily cognitive problems. Further, former players reporting daily cognitive problems were more likely to report memory loss and attention deficit(/hyperactivity) disorder and poorer general mental health, lower quality of life, less satisfaction with social activities and relationships, and more emotional problems. These findings highlight the potential of an assessment of cognitive symptoms for identifying former players with mental health, social, and emotional problems

    The Unknown and Awakening Europe

    Get PDF
    Program for the fourth annual RISD Cabaret held in the Cellar at the top of the Waterman Building. Design by Daniel Kraft.https://digitalcommons.risd.edu/liberalarts_cabaret_programs/1003/thumbnail.jp

    Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms

    Get PDF
    Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. Video Abstract [Figure presented] Keywords: type 2 diabetes (T2D); genetics; disease mechanism; SLC16A11; MCT11; solute carrier (SLC); monocarboxylates; fatty acid metabolism; lipid metabolism; precision medicin

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Anterior Cruciate Ligament Research Retreat VIII Summary Statement: An Update on Injury Risk Identification and Prevention Across the Anterior Cruciate Ligament Injury Continuum, March 14–16, 2019, Greensboro, NC

    No full text

    Comprehensive genomic characterization defines human glioblastoma genes and core pathways

    No full text
    Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas ( TCGA) pilot project aims to assess the value of large- scale multi- dimensional analysis of these molecular characteristics in human cancer and to provide the data rapidly to the research community. Here we report the interim integrative analysis of DNA copy number, gene expression and DNA methylation aberrations in 206 glioblastomas - the most common type of primary adult brain cancer - and nucleotide sequence aberrations in 91 of the 206 glioblastomas. This analysis provides new insights into the roles of ERBB2, NF1 and TP53, uncovers frequent mutations of the phosphatidylinositol- 3- OH kinase regulatory subunit gene PIK3R1, and provides a network view of the pathways altered in the development of glioblastoma. Furthermore, integration of mutation, DNA methylation and clinical treatment data reveals a link between MGMT promoter methylation and a hypermutator phenotype consequent to mismatch repair deficiency in treated glioblastomas, an observation with potential clinical implications. Together, these findings establish the feasibility and power of TCGA, demonstrating that it can rapidly expand knowledge of the molecular basis of cancer
    corecore