55 research outputs found

    Variability in Proto-Planetary Nebulae: VI. Multi-Telescope Light Curves Studies of Several Medium-Bright (V=13-15), Carbon-Rich Objects

    Full text link
    We present ten years of new photometric monitoring of the light variability of five evolved stars with strong mid-infrared emission from surrounding dust. Three are known carbon-rich proto-planetary nebulae (PPNe) with F-G spectral types; the nature of the other two was previously unknown. For the three PPNe, we determine or refine the pulsation periods of IRAS 04296+3429 (71 days), 06530-0213 (80 days), and 23304+6147 (84 days). A secondary period was found for each, with a period ratio P2_2/P1_1 of 0.9. The light variations are small, 0.1-0.2 mag. These are similar to values found in other PPNe. The other two are found to be giant stars. IRAS 09296+1159 pulsates with a period of only 47 days but reaches pulsational light variations of 0.5 mag. Supplemental spectroscopy reveals the spectrum of a CH carbon star. IRAS 08359-1644 is a G1III star that does not display pulsational variability; rather, it shows non-periodic decreases of brightness of up to 0.5 mag over this ten-year interval. These drops in brightness are reminiscent of the light curves of R Corona Borealis variables, but with much smaller decreases in brightness, and are likely due to transient dust obscuration. Its SED is very similar to that of the unusual oxygen-rich giant star HDE 233517, which possesses mid-infrared hydrocarbon emission features. These two non-PPNe turn out to members of the rare group of giant stars with large mid-infrared excesses due to dust, objects which presumably have interesting evolutionary histories.Comment: 25 pages, 14 figures, 1 electronic table, accepted for publication in the Astronomical Journa

    Model-free test of local-density mean-field behavior in electric double layers

    Full text link
    We derive a self-similarity criterion that must hold if a planar electric double layer (EDL) can be captured by a local-density approximation (LDA), without specifying any specific LDA. Our procedure generates a similarity coordinate from EDL profiles (measured or computed), and all LDA EDL profiles for a given electrolyte must collapse onto a master curve when plotted against this similarity coordinate. Noncollapsing profiles imply the inability of any LDA theory to capture EDLs in that electrolyte. We demonstrate our approach with molecular simulations, which reveal dilute electrolytes to collapse onto a single curve, and semidilute ions to collapse onto curves specific to each electrolyte, except where size-induced correlations arise. © 2013 American Physical Society

    Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms.

    Get PDF
    FLT3 mutations are prevalent in AML patients and confer poor prognosis. Crenolanib, a potent type I pan-FLT3 inhibitor, is effective against both internal tandem duplications and resistance-conferring tyrosine kinase domain mutations. While crenolanib monotherapy has demonstrated clinical benefit in heavily pretreated relapsed/refractory AML patients, responses are transient and relapse eventually occurs. Here, to investigate the mechanisms of crenolanib resistance, we perform whole exome sequencing of AML patient samples before and after crenolanib treatment. Unlike other FLT3 inhibitors, crenolanib does not induce FLT3 secondary mutations, and mutations of the FLT3 gatekeeper residue are infrequent. Instead, mutations of NRAS and IDH2 arise, mostly as FLT3-independent subclones, while TET2 and IDH1 predominantly co-occur with FLT3-mutant clones and are enriched in crenolanib poor-responders. The remaining patients exhibit post-crenolanib expansion of mutations associated with epigenetic regulators, transcription factors, and cohesion factors, suggesting diverse genetic/epigenetic mechanisms of crenolanib resistance. Drug combinations in experimental models restore crenolanib sensitivity.This work was supported in part by The Leukemia & Lymphoma Society Beat AML Program, the V Foundation for Cancer Research, the Gabrielle’s Angel Foundation for Cancer Research and the National Cancer Institute (1R01CA183947–01; 1U01CA217862–01; 1U54CA224019-01; 3P30CA069533-18S5). H.Z. received a Collins Medical Trust research grant. S.D.B. was supported by the National Cancer Institute (5R01CA138744-08)

    Grasping the changes seen in older adults when reaching for objects of varied texture.

    Get PDF
    Old age is associated with reduced mobility of the hand. To investigate age related decline when reaching-to-lift an object we used sophisticated kinematic apparatus to record reaches carried out by healthy older and younger participants. Three objects of different widths were placed at three different distances, with objects having either a high or low friction surface (i.e. rough or slippery). Older participants showed quantitative differences to their younger counterparts - movements were slower and peak speed did not scale with object distance. There were also qualitative differences with older adults showing a greater propensity to stop the hand and adjust finger position before lifting objects. The older participants particularly struggled to lift wide slippery objects, apparently due to an inability to manipulate their grasp to provide the level of precision necessary to functionally enclose the object. These data shed light on the nature of age related changes in reaching-to-grasp movements and establish a powerful technique for exploring how different product designs will impact on prehensile behavior

    Aesthetics by Numbers: Links between Perceived Texture Qualities and Computed Visual Texture Properties.

    Get PDF
    Our world is filled with texture. For the human visual system, this is an important source of information for assessing environmental and material properties. Indeed-and presumably for this reason-the human visual system has regions dedicated to processing textures. Despite their abundance and apparent relevance, only recently the relationships between texture features and high-level judgments have captured the interest of mainstream science, despite long-standing indications for such relationships. In this study, we explore such relationships, as these might be used to predict perceived texture qualities. This is relevant, not only from a psychological/neuroscience perspective, but also for more applied fields such as design, architecture, and the visual arts. In two separate experiments, observers judged various qualities of visual textures such as beauty, roughness, naturalness, elegance, and complexity. Based on factor analysis, we find that in both experiments, ~75% of the variability in the judgments could be explained by a two-dimensional space, with axes that are closely aligned to the beauty and roughness judgments. That a two-dimensional judgment space suffices to capture most of the variability in the perceived texture qualities suggests that observers use a relatively limited set of internal scales on which to base various judgments, including aesthetic ones. Finally, for both of these judgments, we determined the relationship with a large number of texture features computed for each of the texture stimuli. We find that the presence of lower spatial frequencies, oblique orientations, higher intensity variation, higher saturation, and redness correlates with higher beauty ratings. Features that captured image intensity and uniformity correlated with roughness ratings. Therefore, a number of computational texture features are predictive of these judgments. This suggests that perceived texture qualities-including the aesthetic appreciation-are sufficiently universal to be predicted-with reasonable accuracy-based on the computed feature content of the textures

    Genome Wide Analysis of Inbred Mouse Lines Identifies a Locus Containing Ppar-γ as Contributing to Enhanced Malaria Survival

    Get PDF
    The genetic background of a patient determines in part if a person develops a mild form of malaria and recovers, or develops a severe form and dies. We have used a mouse model to detect genes involved in the resistance or susceptibility to Plasmodium berghei malaria infection. To this end we first characterized 32 different mouse strains infected with P. berghei and identified survival as the best trait to discriminate between the strains. We found a locus on chromosome 6 by linking the survival phenotypes of the mouse strains to their genetic variations using genome wide analyses such as haplotype associated mapping and the efficient mixed-model for association. This new locus involved in malaria resistance contains only two genes and confirms the importance of Ppar-γ in malaria infection

    Transcriptional and Post-Transcriptional Regulation of SPAST, the Gene Most Frequently Mutated in Hereditary Spastic Paraplegia

    Get PDF
    Hereditary spastic paraplegias (HSPs) comprise a group of neurodegenerative disorders that are characterized by progressive spasticity of the lower extremities, due to axonal degeneration in the corticospinal motor tracts. HSPs are genetically heterogeneous and show autosomal dominant inheritance in ∼70–80% of cases, with additional cases being recessive or X-linked. The most common type of HSP is SPG4 with mutations in the SPAST gene, encoding spastin, which occurs in 40% of dominantly inherited cases and in ∼10% of sporadic cases. Both loss-of-function and dominant-negative mutation mechanisms have been described for SPG4, suggesting that precise or stoichiometric levels of spastin are necessary for biological function. Therefore, we hypothesized that regulatory mechanisms controlling expression of SPAST are important determinants of spastin biology, and if altered, could contribute to the development and progression of the disease. To examine the transcriptional and post-transcriptional regulation of SPAST, we used molecular phylogenetic methods to identify conserved sequences for putative transcription factor binding sites and miRNA targeting motifs in the SPAST promoter and 3′-UTR, respectively. By a variety of molecular methods, we demonstrate that SPAST transcription is positively regulated by NRF1 and SOX11. Furthermore, we show that miR-96 and miR-182 negatively regulate SPAST by effects on mRNA stability and protein level. These transcriptional and miRNA regulatory mechanisms provide new functional targets for mutation screening and therapeutic targeting in HSP

    The Relationship of Maternal Prepregnancy Body Mass Index and Pregnancy Weight Gain to Neurocognitive Function at Age 10 Years among Children Born Extremely Preterm

    Get PDF
    OBJECTIVE: To assess the association between maternal prepregnancy body mass index and adequacy of pregnancy weight gain in relation to neurocognitive function in school-aged children born extremely preterm. STUDY DESIGN: Study participants were 535 ten-year-old children enrolled previously in the prospective multicenter Extremely Low Gestational Age Newborns cohort study who were products of singleton pregnancies. Soon after delivery, mothers provided information about prepregnancy weight. Prepregnancy body mass index and adequacy of weight gain were characterized based on this information. Children underwent a neurocognitive evaluation at 10 years of age. RESULTS: Maternal prepregnancy obesity was associated with increased odds of a lower score for Differential Ability Scales-II Verbal IQ, for Developmental Neuropsychological Assessment-II measures of processing speed and visual fine motor control, and for Wechsler Individual Achievement Test-III Spelling. Children born to mothers who gained an excessive amount of weight were at increased odds of a low score on the Oral and Written Language Scales Oral Expression assessment. Conversely, children whose mother did not gain an adequate amount of weight were at increased odds of a lower score on the Oral and Written Language Scales Oral Expression and Wechsler Individual Achievement Test-III Word Reading assessments. CONCLUSION: In this cohort of infants born extremely preterm, maternal obesity was associated with poorer performance on some assessments of neurocognitive function. Our findings are consistent with the observational and experimental literature and suggest that opportunities may exist to mitigate risk through education and behavioral intervention before pregnancy

    Directed assembly of optoelectronically active alkyl-<i>π</i>-conjugated molecules by adding <i>n</i>-alkanes or <i>π</i>-conjugated species

    Get PDF
    Supramolecular assembly can yield ordered structures by taking advantage of the cumulative effect of multiple non-covalent interactions between adjacent molecules. The thermodynamic origin of many self-assembled structures in water is the balance between the hydrophilic and hydrophobic segments of the molecule. Here, we show that this approach can be generalized to use solvophobic and solvophilic segments of fully hydrophobic alkylated fullerene molecules. Addition of n-alkanes results in their assembly--due to the antipathy of C60 towards n-alkanes--into micelles and hexagonally packed gel-fibres containing insulated C60 nanowires. The addition of pristine C60 instead directs the assembly into lamellar mesophases by increasing the proportion of π-conjugated material in the mixture. The assembled structures contain a large fraction of optoelectronically active material and exhibit comparably high photoconductivities. This method is shown to be applicable to several alkyl-π-conjugated molecules, and can be used to construct organized functional materials with π-conjugated sections

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
    corecore