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Our world is filled with texture. For the human visual system, this is an important
source of information for assessing environmental and material properties. Indeed—and
presumably for this reason—the human visual system has regions dedicated to
processing textures. Despite their abundance and apparent relevance, only recently
the relationships between texture features and high-level judgments have captured the
interest of mainstream science, despite long-standing indications for such relationships.
In this study, we explore such relationships, as these might be used to predict
perceived texture qualities. This is relevant, not only from a psychological/neuroscience
perspective, but also for more applied fields such as design, architecture, and the
visual arts. In two separate experiments, observers judged various qualities of visual
textures such as beauty, roughness, naturalness, elegance, and complexity. Based
on factor analysis, we find that in both experiments, ∼75% of the variability in the
judgments could be explained by a two-dimensional space, with axes that are closely
aligned to the beauty and roughness judgments. That a two-dimensional judgment
space suffices to capture most of the variability in the perceived texture qualities
suggests that observers use a relatively limited set of internal scales on which to base
various judgments, including aesthetic ones. Finally, for both of these judgments, we
determined the relationship with a large number of texture features computed for each
of the texture stimuli. We find that the presence of lower spatial frequencies, oblique
orientations, higher intensity variation, higher saturation, and redness correlates with
higher beauty ratings. Features that captured image intensity and uniformity correlated
with roughness ratings. Therefore, a number of computational texture features are
predictive of these judgments. This suggests that perceived texture qualities—including
the aesthetic appreciation—are sufficiently universal to be predicted—with reasonable
accuracy—based on the computed feature content of the textures.

Keywords: aesthetics, texture perception, semantic differential, features, evaluative, descriptive, beauty,
roughness
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INTRODUCTION

Can aesthetic appreciation of textures be predicted based
on computed visual features? That is the question addressed
in the present work that arose from the Syntex project
(http://visualneuroscience.nl/syntex). Aesthetics often refers to
beauty and related judgments, such as preferences. In a broader
sense, it often refers to other impressions, such as the judgment
of naturalness. Both interpretations apply to this article; its focus
is on beauty, but we also consider other judgments about visual
textures.

We use the following working definition of texture: any
pattern in which no single object outline can be discerned. We
used ‘‘single’’ because an outline of one stone would count as an
object, but a field of stones would count as a texture. Textures
typically contain repetitive information. For the present study,
color was defined as an integral part of textures or surface
properties.

Visual and tactile textures are widely used in industrial
design, art, and architecture to convey information (e.g.,
about the atmosphere or safety of buildings, or the strength,
quality, or intended use of objects) and to influence aesthetic
experience. Despite this widespread use, until recently
there have been relatively few systematic attempts to reveal
systematic relationships between such perceived aesthetic
qualities and the texture’s computed visual features. The
Syntex project and its derivatives also addressed the impact
of visual textures on aesthetic experiences in a number of
previous publications (Thumfart et al., 2008, 2011; Liu et al.,
2015).

Using Textures to Examine Aesthetic
Responses
The study of texture processing is interesting in itself
because evidence is accumulating that textures are processed
in dedicated visual processing regions, which are located
mainly along the medial visual cortex (Puce et al., 1996;
Peuskens et al., 2004; Cant and Goodale, 2007; Hiramatsu
et al., 2011; Jacobs et al., 2014). We consider textures or
surfaces as the complement of shapes or outlines. Texture
information can be quantified as the degree to which a
feature is present. For outline stimuli, in which texture
information is dropped, only things such as the length of
outlines, the position of certain elements, or the number
of elements can be quantified, along with features such as
contrast which can also be computed for textures. When
using natural stimuli such as faces, texture information
can be quantified for the entire picture, but this would
disregard differences in various parts of the picture; e.g., the
frequency content of a face would differ from the frequency
content of the hair or of the background of the face,
resulting in average values which reflect neither. We consider
these to be issues that can potentially affect any human
output (judgments or physiological responses). Studying texture
perception may therefore lead to insights into human perception
that may not be found when using other stimulus types.
In addition, textures provide important clues about material

properties. Understanding texture perception will therefore
contribute to our understanding of the perception of material
properties.

Texture processing is not only inherently interesting. If we
improve our understanding of texture processing mechanisms,
this may shed light on the processing of other stimuli that
are more typically investigated in aesthetics research, such
as photographs of faces or objects or various categories of
painting (which also contain texture). Moreover, the results
could possibly point out confounds in other studies. Compared
to such relatively complex stimuli, the use of textures has
advantages, such as minimizing semantic associations that are
hard to control for. Semantic information has been shown to be
an important factor for determining preferences (Berlyne, 1970;
Martindale et al., 1990). With textures, semantic influences are
attenuated, although some textures may still elicit associations
through the recognition of the materials of which they are
composed (e.g., stone, wood, silk or fur). A final advantage
of using textures over more complex stimuli is the availability
of a large number of algorithms to compute image features,
allowing quantification of their relationship to perceived texture
qualities. For this reason, we refer to our approach as: aesthetics
by numbers.

Previous Research into Texture Perception
In the visual domain, studies examining texture perception have
primarily focused on lower-level texture processing such as
texture segmentation and discrimination (Julesz, 1981; Bergen
and Adelson, 1988; Knill et al., 1990; Landy and Bergen,
1991; Williams and Julesz, 1992; Victor and Conte, 1996;
Merigan, 2000; Sireteanu et al., 2005; Victor et al., 2005; Ben-
Shahar, 2006; Abbey and Eckstein, 2007; Yeshurun et al., 2008;
Hollingworth and Franconeri, 2009). Studies of higher-level
processing of visual textures have focused on judgments of
appearance and material properties related to glossiness (Pont
and te Pas, 2006; Motoyoshi et al., 2007a), illumination (Pont
and te Pas, 2006), metallic appearance (Motoyoshi et al., 2007b),
transparency (Watanabe and Cavanagh, 1993; Fleming and
Bülthoff, 2005), estimated weight (Buckingham et al., 2009),
roughness (Ho et al., 2006), slipperiness (Lesch et al., 2008),
complexity and self-similarity and liking (Bies et al., 2016;
Güçlütürk et al., 2016), and the relationship between perceived
material properties and material categories (Fleming et al.,
2013).

The number of studies investigating preferences for textures
or features that can be considered texture features (e.g., Soen
et al., 1987; Aks and Sprott, 1996; Schira, 2003; Fleming et al.,
2013) is greatly exceeded by the vast number of studies devoted
to understanding the affective responses to objects. Aesthetics
research has often focused on stimuli such as paintings or faces
for which feature information is hard to control—let alone
that this has even been attempted. Several studies have found
relationships between preference and color features (Ball, 1965;
Valdez and Mehrabian, 1994). Some studies have examined
the frequency content and self-similarity of paintings, with or
without relating this aspect to actual beauty judgments (Redies
et al., 2007; Graham and Redies, 2010; Mallon et al., 2014).
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In the Syntex-project and the current article we specifically
sought to address the relationship between texture features and
aesthetics.

Evidence for a Textural Influence on
Preferences
The recency of the interest in the relationships between
textural image features and beauty ratings is somewhat
surprising, given the many long-standing indications in the
literature that texture may have an impact on preference.
Such indications come from studies investigating the
relationship between preference and fractal dimension
(Aks and Sprott, 1996; Spehar et al., 2003; Juricevic et al.,
2010; Spehar and Taylor, 2013), entropy (Stamps, 2002),
spatial frequency content (Soen et al., 1987; Kawamoto and
Soen, 1993; Schira, 2003) or certain colors (Valdez and
Mehrabian, 1994; Jacobs et al., 2010) of stimuli (usually not
textures—but such features are also present in textures).
Also work showing that paintings contain certain spatial
frequency characteristics (Redies et al., 2007; Graham and
Redies, 2010) is suggestive of such preference. Moreover,
texture strongly influences facial attractiveness (Jones et al.,
2004). In line with the reported relationship between spatial
frequencies and beauty ratings, the brain responses to affective
stimuli—such as expressive faces—depend on the frequency
bands present in the stimulus (Vuilleumier et al., 2003; Holmes
et al., 2005; Alorda et al., 2007; Delplanque et al., 2007).
Moreover, brain centers regarded as emotion processors
(such as the amygdala) respond to features such as angularity
(Bar and Neta, 2007), which are both object and texture
features.

To summarize the above, there are indications that texture
features influence beauty ratings. Until recently, these influences
have not yet been systematically investigated. To do so,
we decided to perform two exploratory experiments and
a computational analysis to establish the degree to which
computed visual texture features influence beauty and other
high-level judgments.

Our present study differs in a number of ways from some
of the earlier work from the Syntex-consortium (Thumfart
et al., 2008, 2011; Liu et al., 2015). First, we opted for a
semantic differential approach in which—based on a factor
analysis of a larger number of judgments—we select a small
number of judgments that best represent the observers’ judgment
space, rather than a priori assigning judgments to different
‘‘cognitive layers’’ (Thumfart et al., 2008, 2011; Liu et al.,
2015). Second, we also used factor analysis for selecting the
relevant computational features (rather than the Laplacian
Score employed by Liu et al., 2015). Third, we emphasize
the relevance of single features to the selected judgments,
rather than the overall performance of a model, as Liu et al.
did.

To give an overview of the present study, we first
conducted an experiment for selecting the appropriate textures
to use, and one to select appropriate adjectives for use in
the judgments. Next, we conducted two separate semantic

differential experiments, in which we focus on revealing
the relationships between various judgments on textures and
selecting the most representative ones (based on factor analysis).
Finally, in a computational analysis, we address the relationships
between computed texture features and the selected judgments.

EXPERIMENT 1: TEXTURE SELECTION

The aim of this experiment was to select the textures for use in
semantic differential experiment 1 (reported below).

Methods
Participants
Twenty four participants (12 males, age range 18–29 years)
participated. All participants had normal or corrected to normal
vision. Our entire study conformed to the tenets of the
Declaration of Helsinki. The experiments were carried out as
part of a psychology bachelor’s course. The ethical review
board of the Department of Psychology of the University of
Groningen approved the study. Participants gave their written
informed consent prior to participation. All participants were
students in higher education and received course credits for their
participation.

Equipment and Software
Experiments were run on a MacBook pro under Mac OS X
(Apple, Cupertino, CA, USA), usingMatlab (Mathworks, Natick,
MA, USA) with the Psychophysics toolbox extensions (Brainard,
1997). Stimuli were presented on a 30’’ Apple Cinema HD
Display monitor.

Stimuli
From a large database (available on request; see Figure 1 for
examples), taken from various sources, a pre-selection of 300
textures was made, based on criteria such as the absence of object
outlines, and the elimination of very similar textures. The visual
angle of the textures ranged from 3.3 to 32◦ in height, and from
5.7 to 37◦ in width.

Procedure
Textures were presented on the screen one by one. Participants
indicated their preference by adjusting the position of a slider at
the bottom of the screen (Figure 1) by moving a mouse along a
bar corresponding to the judged dimension. They indicated their
judgment by clicking on the desired location (right = beautiful;
left= ugly/not beautiful).

Satisfaction with the judgment was indicated by pressing a
mouse button, after which the screen went blank. The next
trial started 1000 ms later. Instructions were given orally,
as well as written on the screen, prior to the start of each
run. All textures were presented once in a block, in random
order. Participants were asked to use the entire range of the
slider, and to not necessarily regard the central point as being
‘‘neutral’’. In order to give a sense of the range of stimuli
they would see, and to practice the procedure, a few test
trials were performed by the participant before the actual
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FIGURE 1 | Example textures. Thumbnails of textures used in the experiments. The enlargement shows a texture sample, as displayed on screen, with a green
slider bar at the bottom.

start of the experiment. Participants were asked to respond
based on their first impression. Participants performed the
test individually. The experiment was performed in a room
that was dark, except for the illumination provided by the
screen.

Analysis and Selection
Based on the average rank order over participants, the 20
most and 20 least liked textures were selected, as well as
20 from the middle of the range. Note: we determined that
such a selection of the most extreme textures is necessary
to obtain reliable beauty ratings (see Supplementary Material,
part I). We consider that this is likely to also enhance our
ability to discover relationships between specific features and
judgments.

Results
The texture selection experiment yielded a rank ordering of the
20 most and the 20 least liked textures, as well as 20 from the

middle of the range. Four of each category are displayed in
Figure 2.

EXPERIMENT 2: ADJECTIVE SELECTION

The aim of this experiment was to select the adjectives for use in
the first semantic differential experiment (reported below).

Methods
Participants
Seventeen participants (9 males, age range 18–28 years), different
from those who participated in experiment 1, took part. All
participants had normal or corrected to normal vision.

Stimuli, Equipment and Software
Stimuli were the textures selected in the experiment 1. Equipment
and software was identical to that used in experiment 1.
This experiment was performed in a dimly lit room, to allow
participants to write down their responses.
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FIGURE 2 | Examples of textures rated high, low, and average on beauty. Twenty of each were selected for use in the first semantic differential experiment.

Procedure
This experiment consisted of a ‘‘adjective association’’ and
a ‘‘triad’’ task. It was performed in groups of up to five
participants, who were seated 2–3 meters from the screen.
Participants noted their responses on paper, and the experiment
leader paced the task according to the speed of the group.
First, in the adjective association task, participants viewed the
textures, and wrote down any words (up to five) occurring

to them. In the triad task, the textures (halved in size) were
presented in groups of three. Participants’ task was to pick
the one that did not belong to the others, and write down
why it was different (the ‘‘Minimum Context Card Form’’
of construct elicitation by triads of elements (Kelly, 1955;
Fransella and Bannister, 1977)). Both in the adjective generation
task and in the triad task each texture was presented only
once.
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Analysis
Similar adjectives were grouped together. Grouping was
according to a consensus judgment between four experimenters.
A count was made of the occurrence of adjectives in each group,
to arrive at the adjectives that were most frequently used.

Results
Participants generated many different adjectives, which could
be grouped into categories without much disagreement between
experimenters. The adjectives generated contained not only
many descriptive adjectives, like rough and hard, but also many
subjective adjectives, such as boring, artistic, beautiful, warm,
and cheerful. The adjective generation experiment yielded a
list of adjectives categorized in groups (Table 1). For the most
frequently mentioned groups, one representative adjective was
chosen for use in the first semantic differential experiment.
Words relating to contrast and luminance were excluded,
because we expected they would relate too obviously to their
computed counterparts.

SEMANTIC DIFFERENTIAL EXPERIMENT 1

We performed a semantic differential experiment using the
textures and judgments obtained through the two selection
experiments reported above. Our aim was to examine the
relationships between the different judgments, and to determine
the dimensionality of the judgment space.

Methods
Participants
There were 19 participants (12 male; age range 18–29 years). This
was a subgroup of the participants that had also participated in
selection experiments 1 or 2.

Equipment and Software
The equipment and software was the same as that used in
experiment 1. The experiment was performed in a room that was
dark except for the illumination provided by the screen.

Stimuli
Sixty texture stimuli (see Figures 1, 2 for examples)—selected
in experiment 1—were used. Stimuli were displayed on a
gray background, into which they were blended smoothly (see
Figure 1). Viewing distance was about 70–80 cm.

Procedure
In a trial, participants were presented with a texture on a
computer screen, and were asked to judge it on one of several
dimensions. Judgments were made for the following dimensions:
beautiful-ugly, smooth-rough, hard-soft, colorfulness, warm-
cold, young-old (age), natural-artificial, fuzziness-sharpness,
and interestingness-boringness. These dimensions were selected
based on the results of experiment 2. As in experiment 1,
participants indicated their preference by adjusting the position
of a slider at the bottom of the screen. The poles of the judgments
were randomly assigned to either the left or right side of the slider

TABLE 1 | Words generated in the adjective generation experiment,
grouped together according to similarity.

Generated adjectives

Adjectives Adjectives Word count

Ugly Beautiful, gorgeous 63
Smooth, flat, slender rough, hefty, granular 82
Cold, chilly, cool, warm, sunny, cheerful, 172
not sunny summertime, happy
soft, not hard hard 40
Dark, unlit, night light, bright 318
boring Exciting, snazzy, 22

snappy, touching,
thrilling, interesting

not artistic artistic, picturesque, 7
skilful

not much color, black-white, colorful, fierce 235
faint, colorless colors, color shades
old, outdated, antique young, new 47
fuzzy, unclear, undefinable not vague, sharp, clear 179
artificial natural 78
irregular regular 8
little contrast a lot of contrast 37

The extremes of the relevant dimension are arranged in different columns, with

a third column mentioning the number of times these were mentioned. Words

selected for use in the first semantic differential experiment are italicized.

bar. For each observer, dimensions were evaluated in separate
runs, the order of which was randomized.

Analysis
The individual judgments, per adjective, were linearly re-
scaled to a range between –100 and +100. Next, the average
judgments were computed over subjects. The resulting scores
were subjected to a factor analysis, using Varimax rotation
and Kaiser normalization (Kaiser, 1958) in SPSS. The number
of factors to be retained was determined by parallel analysis
(Kaufman and Dunlap, 2000; Hayton et al., 2004), using 100
permutations of the average judgments about the textures. The
eigenvalues exceeding those for the permuted data were taken as
indicating factors to be retained.

Results
For the judgments, parallel analysis indicated that two factors
should be retained in a factor analysis (Figure 3, bottom left
panel). The first two factors explained 73% of the variance in the
judgments.

Results (Figure 3, top left panel) show that colorfulness,
warmth, beauty and interestingness load strongly on the first
factor, while roughness and age load strongly on the second
factor. Naturalness fell in-between, and the hard-soft dimension
had low loadings on both components. Results for a three-
component solution are shown in the Supplementary Material,
(part III).

Conclusion
We found that two components could adequately capture most
of the variation (73%) in the judgment space. This indicates
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FIGURE 3 | Judgments loadings on the varimax rotated factors, for both studies. Two factors were retained. Most judgments load selectively on one of both
factors. Results for the first experiment (left panel) and second experiment (right panel) are very comparable.

that many judgments were highly related. Various authors
(e.g., Mandler and Shebo, 1983; Jacobsen et al., 2006) have
distinguished between evaluative and descriptive judgments, and
we find a similar distinction for the texture stimuli. The first
component received high and exclusive loadings of judgments
which can be qualified as evaluative in nature: beauty, warmth,
colorfulness, and interestingness. Intuitively, it makes sense that
textures judged to be beautiful tend to also be judged positive
in other respects, such as elegance and warmth. These aesthetic
judgments seem to be based on perceived colorfulness to a
large extent. The second component received high and exclusive
loadings of more descriptive judgments, namely roughness
and age.

SEMANTIC DIFFERENTIAL EXPERIMENT 2

A second semantic differential experiment was undertaken
to verify the results of the first one, yet using somewhat
different judgments and texture stimuli. We also did this because
replications are required for small sample sizes (Guadagnoli and
Velicer, 1988). In this way, we hoped to verify the robustness
of the results. While the selection of texture stimuli based on
beauty ratings (as in experiment 1) may have enhanced our
ability to find relationships with beauty, it may also have biased
results in undesirable ways. Therefore, here we opted not to
do so again. Rather, we chose different texture stimuli from
our set by including textures covering much of the feature
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space. Textures were selected by eye since, due to the large
number of features compared to the relatively limited number of
texture stimuli, it proved impossible to do this systematically and
rigorously. Another difference with the first experiment is that we
equalized the size of the different stimuli, as is common practice
in psychological experiments. We also chose partially different
judgments, while sticking to others, to strike a balance between
replicating the previous results and generalizing our results
to new judgments (output) and textures (input). Despite the
somewhat different set of judgments and textures, we anticipated
that results from this second experiment would agree with those
of the first experiment.

MATERIALS AND METHODS

Participants
There were 20 participants (10 males; age range 20–29 years),
none of whom had participated in the first semantic differential
experiment nor in selection experiments 1 or 2.

Equipment and Software
Equipment and software was largely as described in semantic
differential experiment 1, except for the display used, which was
a 19’’ LaCie CRT monitor.

Stimuli
Seventy texture stimuli were taken from the database containing
textures originating from various sources. All textures were re-
sized to 24.2 (width) by 20.2 (height) degrees, by cropping larger
textures, or by ‘‘growing’’ smaller textures, using a standard
algorithm (Efros and Leung, 1999). Stimuli were displayed on
a gray background, into which they blended smoothly (see
Figure 1). Viewing distance was about 70–80 cm. Textures were
selected to cover the range of feature values better than in
semantic differential experiment 1, as illustrated in Figure 4.

Procedure
The procedure was largely identical to the procedure for
semantic differential experiment 1, with the following exceptions:
judgments were made for the dimensions beautiful-ugly,
smooth-rough, hard-soft, colorfulness, warm-cold, complex-
simple, natural-artificial, elegance, and feeling (‘‘How does this
texture make you feel?’’: positive-negative).

Analysis
The analysis was as described for semantic differential
experiment 1.

Results
Results are displayed in the right panels of Figure 3.
Parallel analysis indicated that two factors should be retained
in a factor analysis (bottom right). The first two factors
together explained 76% of the variance in the judgments.
The first factor received high loadings of the judgments
colorfulness, beauty, warmth, feeling, and elegance, while

the second factor received high loadings of roughness and
complexity.

Conclusion
Results of both studies were highly similar, despite the
involvement of only a limited number of participants, the use
of different textures, and the substitution of some judgments
by others. In both studies, parallel analysis indicated that
two components sufficed to capture most of the variability in
the judgments. Also in both studies, beauty, colorfulness, and
warmth load highly and exclusively on the first component,
while roughness loads highly and exclusively on the second
component. Naturalness falls in-between these other judgments,
with a moderately high loading on both components. The
hard-soft dimension had relatively low loadings on both
components, and did not seem to be captured well by the two-
component solution. The robustness of the results is indicated
by the judgments which were included in both studies. As
in semantic differential experiment 1, the results support our
labeling of the first component as evaluative in nature and
the second component as descriptive in nature. Based on
the results of both semantic differential experiments, beauty
appears a good pick for a judgment representing the evaluative
component (and has an obvious relevance in an aesthetic
study), while roughness appears to well represent the descriptive
component.

COMPUTATIONAL ANALYSIS: THE
RELATIONSHIP BETWEEN FEATURES
AND JUDGMENTS

The goal of this analysis is to establish the degree to which
computed visual texture features correlate with the beauty and
roughness judgments (being chosen as representative judgments
for the two axes in judgment space uncovered in the two semantic
differential experiments). We explore such relationships, as these
might be used to predict perceived texture qualities.

Methods
Feature Computation
A more elaborate description of our texture features and their
computation is provided in the Supplementary Material (part II).
Here we provide a brief overview.

Computed features are based on Gray-Level Co-occurrence
Matrices, a set of features related to psychological judgments
(Tamura features), Neighborhood Gray-Tone Difference
Matrices, the Fourier spectrum, Gabor energy features, and
features expressing the presence of colors, brightness, and
saturation.

The Tamura features are based on psychological evaluations,
and comprise coarseness, contrast, directionality, line-likeness,
regularity, and roughness. The Gray Level Co-occurrence
Matrices are used to compute statistical properties like entropy,
energy, and homogeneity and indicate how often particular
gray levels co-occur at a certain distance. For our purposes,
we computed them for distances of 1, 2, 4, and 8 pixels.
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FIGURE 4 | Feature values of textures for Tamura coarseness and contrast. All textures in our database are depicted in cyan (light blue). The ones used in
semantic differential experiment 1 are depicted in black, and the ones used in semantic differential experiment 2 are depicted in red. Tamura coarseness was already
well covered in experiment 1. In experiment 2, some higher values for Tamura contrast were included to have a better coverage of this feature. We could not take
into account all possible combinations of features, and in this case one can see that the combination of high Tamura coarseness and high Tamura contrast was not
included.

A Neighborhood Gray Tone Difference Matrix is a vector
containing, for each gray level, a sum of the differences
in gray tone with all the surrounding pixels, for each
pixel with that gray tone. The size of the neighborhood is
variable, and we computed matrices for sizes of 3 by 3
and 5 by 5 pixels. Based on these matrices, the features
coarseness, contrast, busyness, complexity, and strength were
computed.

Fourier features are based on the spatial frequencies in
the brightness variations. The extent to which a certain
spatial frequency is present is expressed as its energy or
power. First, a two-dimensional image is transformed into
the frequency domain using the fast Fourier transform,
to obtain the Fourier spectrum. Each component of the
spectrum is represented by a complex number that describes
a frequency in the two-dimensional image by means of
amplitude and phase. The component coordinates in the
spectrum determine the frequencies wave length and direction.
The spatial frequency with highest wave length (uniform
signal, i.e., average brightness) is represented in the center of
the spectrum, while high frequencies can be found on the
outside.

The average energy of circular bands around the average
brightness was computed for different radii. Also, the energy
of wedges with their peak at the average brightness was
computed, yielding a measurement of the orientation of

the image. In this way, 12 circular energy features and 24
wedge energy features were computed, each reflecting the
presence of information at a different spatial frequency (circular
rings) and at a different orientation (wedges). In addition,
a number of features summarizing their distribution were
computed. Similar to Fourier features, Gabor features capture
the spatial frequencies in pictures, but they preserve some
spatial information. The human visual system is known to
contain cells that work as Gabor filters. Gabor ‘‘energy’’, over
the entire texture, was computed for four spatial frequencies,
in six orientations. Average saturation and intensity were
assessed after converting the image from RGB to HSV color
space. The presence of the colors red, green, yellow, cyan,
blue, and magenta, was computed by partitioning the hue
component of HSV color space into six sectors, and counting
the relative frequency of pixels within each sector. The sector
frequency was normalized to the average image value and
saturation.

We verified that the use of the texture growth algorithm did
not affect the feature values by computing the texture features
before and after application of the algorithm. The feature values
after application of the algorithm were obtained by averaging the
feature values over 30 patches of each texture. We determined
the percentage of feature values falling outside a range of two
standard deviations (the 95% confidence interval) from the
original textures, in the distribution of original texture feature
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values. Across all features and textures, 0.7% of the feature values
fell outside this interval, indicating that the feature values were
hardly affected by the texture growth algorithm.

Results
Linear Regression Between Judgments and Feature
Factors
Factor analysis was performed with the 20 feature factors
explaining most of the variance in the feature values. Although
the parallel analysis indicated that 10 factors should be retained,
we doubled the amount because we did not want to miss any
potentially relevant factors. To some extent this—admittedly
non-rigorous—decision is justified by the fact that a parallel
analysis only evaluates the variance in the computational feature
values. Therefore, this does not guarantee relevance of the
computed factors—or the retained computational features—for
the beauty or other judgments. In particular, one factor
containing color information would have been missed if we
had retained only 10 factors, and color appears relevant in
the light of the colorfulness judgment relating to beauty (see
above) and of previous results indicating that people fixate
more on patches containing color information when judging
for beauty (as compared to roughness; Jacobs et al., 2010).
Subsequently, a linear regression was performed between these
20 feature factors on the one hand, and the beauty and roughness
judgments on the other, in order to determine which feature
factors significantly correlated with the beauty and roughness
judgments.

The 20 feature factors together explained 63% of the variance
in the feature values. They explained 59% of the variance in
the beauty ratings and 50% of the variance in the roughness
ratings.

Feature factors 4, 6, 9, 13, and 17 exerted a significant effect
on beauty judgments, and Feature factors 3 and 9 exerted a
significant effect on roughness (Table 2). The features loading
strongest, whether positively or negatively, on these factors are
displayed in Table 2. Based on these features, we labeled Feature
Factor 4 as an intensity variation factor, Factor 6 as a low spatial
frequency Gabor factor, Factor 9 as an intensity factor, Factor
13 as a saturated redness factor, Factor 17 as a directionality
(diagonality) factor, and Factor 3 as a uniformity factor.

Factors exerting a significant effect on beauty, at a Bonferroni-
corrected two-sided α-threshold of 0.05/20= 0.0025 (109 degrees
of freedom per test), were Factors 4 (t = −6.84, p < 0.0001), 6
(t = −4.03, p = 0.0001), 9 (t = 3.14, p = 0.0022), 13 (t = −5.38,
p < 0.0001), and 17 (t = −3.17, p = 0.0020). Factors exerting
a significant effect on roughness were Factors 3 (t = −6.90,
p < 0.0001) and 9 (t =−3.54, p= 0.0006).

The Direction of the Relationships
To determine the direction of the relationships, and to confirm
the findings of our analysis, direct correlations were computed
between beauty and the features loading strongly on the feature
components that were relevant for beauty. Similarly, correlations
were computed between roughness and the features loading

strongly on the feature components that were relevant for
roughness.

Low spatial frequencies, computed according to Fourier
principles (as in Factor 4), were associated with higher
beauty ratings. Accordingly, high spatial frequencies computed
according to Gabor principles (as in Factor 6) were negatively
associated with beauty ratings. Saturation and redness were
positively associated with beauty ratings. The presence of
diagonal elements in the textures (the wedge energy features in
Factor 17) was associated with higher beauty ratings. Uniform
textures were rated as smooth or not rough. High average
intensity (luminance) led to low roughness ratings.

Conclusion
A number of feature factors, and through these a number of
computational features, correlated significantly with beauty and
roughness ratings. In other words, both beauty and roughness
judgments about textures show systematic relationships to
computed visual features present in the textures.

GENERAL DISCUSSION

Even though individuals may differ in their aesthetic judgments,
in this study we have shown that there is a common element in
their judgments which can be related to specific computed visual
features present in the textures. Below, we discuss this finding as
well as our other results in more detail.

A Two-Dimensional Judgment Space
Suffices to Capture Most Variability in
Perceived Texture Qualities
We found that two judgment factors captured 73%
(experiment 1) and 76% (experiment 2) of the variance
in the judgments. The first factor was associated with the
judgments of beauty, elegance, ‘‘feeling’’, warmth, colorfulness,
and interestingness. With the exception of colorfulness, these
judgments seem to have an affective or evaluative element in
common. The second factor had high and exclusive loadings
of roughness, complexity, and age, and seems to be more
descriptive in nature. These two factors are orthogonal, meaning
that the judgments loading exclusively on one component are
unrelated to the judgments loading exclusively on the other
component. On the other hand, the judgments loading high on
the same factor are highly correlated. The two factors together
make up a two-dimensional judgment space that captures
most of the variability in the perceived texture qualities. This
finding suggests that observers use a relatively limited set of
internal scales on which to base various judgments, including
aesthetic ones.

Rao and Lohse (1996) used a different technique to
identify relevant dimensions for texture perception: subjects
grouped textures into categories of their own choice. The data
were analyzed using multidimensional scaling and hierarchical
cluster analysis. Based on this, they identified the dimensions
of repetitiveness-irregularity, directionality, and simplicity-
complexity as important for texture perception. It is striking
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TABLE 2 | The feature factors that significantly correlated with beauty and roughness ratings and their constituent features.

Judgment Factor Features r Description

Beauty 4
r2
= 0.22

intensity variation

Mean correlation (d = 8)
C_energy2
Roughness
Mean correlation (d = 4)
C_energy3

0.39
0.40
0.43
0.44
0.33

Mean intensity variation of pixel pairs at a distance of 8 pixels
Presence of low spatial frequency content in the texture
Tamura roughness, high if both coarseness and contrast are high
Mean intensity variation of pixel pairs at a distance of 4 pixels
Presence of low spatial frequency content in the texture

6
r2
= 0.09

Gabor frequency

O2s1
O3s1
O6s1
O5s1
C_energy5

0.11
0.11
0.14
0.15
0.03

Low spatial frequencies from the Gabor domain, with different
orientations

Presence of low spatial frequency (Fourier) content in the texture

9
r2
= 0.04

intensity

Avg. texture int. (d = 8)
Avg. texture int. (d = 4)
Avg. texture int. (d = 2)
Avg. texture int. (d = 1)
Average intensity

0.18
0.18
0.19
0.20
0.33

Mean over the average texture intensity; i.e., average texture intensity

13
r2
= 0.21

saturation, intensity

Average saturation
Degree of redness
Regularity
Average intensity
R_sumVar

0.45
0.26
−0.07

0.33
−0.39

Range of the weighted sum of the GLCM secondary diagonal entries

17
r2
= 0.08

directionality

Wedge energy 67.5
Wedge energy 60
Wedge kurtosis
Wedge energy 52.5
Wedge energy 70.5

0.26
0.23
0.00
0.11
0.20

Presence of texture elements with orientation 67.5◦ from vertical
Presence of texture elements with orientation 60◦ from vertical
Skewness of the distribution of wedge energy features
Presence of texture elements with orientation 52.5◦ from vertical
Presence of texture elements with orientation 70.5◦ from vertical

Roughness 3
r2
= 0.34

uniformity

Mean angular second
moment (d = 2)
Mean angular second
moment (d = 1)
Mean angular second
moment (d = 4)
Mean angular second
moment (d = 8)
Mean entropy (d = 2)

−0.44

−0.43

−0.45

−0.45

0.58

Mean over the sum of squared GLCM entries. A measure of uniformity

Mean entropy

9
r2
= 0.13

intensity

Avg. texture int. (d = 8)
Avg. texture int. (d = 4)
Avg. texture int. (d = 2)
Avg. texture int. (d = 1)
Average intensity

−0.39
−0.40
−0.40
−0.39
−0.47

Mean over the average texture intensity; i.e., average texture intensity

The first column lists the judgments. The second column lists the number of the feature factor, and a label attached to these factors, based on the most relevant features.

The third column lists the features with the highest absolute loadings on each of the relevant feature factors. The fourth column lists the correlation coefficients per feature,

to confirm the relevance of these features, and to ascertain the directionality of the relationship to the ratings. The fifth column provides a brief description of the features.

that: (1) except for regularity (mentioned eight times) which
seems highly similar to repetitiveness, our participants did not
spontaneously generate words pertaining to these dimensions;
and (2) our semantic differential studies did not distinguish
between these dimensions. At the same time, it is striking that
Rao and Lohse (1996) did not identify components relating to
more subjective aspects, such as beauty, warmth, and naturalness.
What may underlie the differences between the adjectives we
obtained, and the dimensions obtained by Rao and Lohse (1996)?
A first possibility is the difference in methodologies. We had
subjects generate words, while Rao and Lohse (1996) had subjects
classify textures, without an explicit reference to words or
adjectives. Possibly, observers use more ‘‘objective’’ (in the sense

of higher inter-subject agreement) criteria for categorizing than
for labeling textures. A second possibility lies in the different
stimulus sets used: Rao and Lohse (1996) used 30 textures from
the Brodatz album, which are limited in that they are all gray-
scale pictures, and most of the repetitive textures have horizontal
and/or vertical orientation. Color or colorfulness might be an
important factor eliciting more subjective qualifications, like
beauty, as might be inferred from our semantic differential
studies, where both beauty and colorfulness judgments load
highly on the same component. We used a much broader set of
textures, which included Brodatz textures, but also a lot of other
textures, obtained from commercial or other websites. These
different texture sets may have elicited different associations.
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These two judgment factors that we find correspond well
to judgment factors obtained in other studies, where different
stimuli (i.e., non-textures) were employed (Osgood et al., 1957;
Takahashi, 1995). Such studies typically found an evaluative
factor with high loadings of subjective judgments such as beauty,
elegance, warmth, and another factor with high loadings of more
descriptive judgments such as roughness. These studies labeled
these factors as ‘‘evaluative’’ and ‘‘potency’’, respectively. We
labeled the second factor as descriptive, following Jacobsen and
Höfel (2003).

Computed Visual Texture Features are
Predictive of Perceived Texture Qualities
We adopted an exploratory approach, and used a diverse
set of textures, features, and judgments, to find relationships
between texture features and judgments, without restricting
ourselves to features or judgments reported in the literature.
Because so many parameters lead to a loss of degrees
of freedom in statistical testing, we reduced feature space
to the 20 most important factors. The 20 feature factors
together explained 63% of the variance in the feature values.
They explained 59% of the variance in beauty judgments,
and 50% of the variance in roughness judgments. We
identified five feature factors that significantly predicted beauty
judgments: a factor capturing intensity variation, a factor
capturing the spatial frequency information, a factor capturing
the luminance, a factor capturing the color information
(saturation and the degree of redness, mainly), and a factor
capturing directionality, particularly diagonal orientations. We
also identified two feature factors that significantly predicted
roughness judgments: a luminance factor (the same factor
that influenced the beauty judgments) and a uniformity
factor.

Our results are in good agreement with previous studies
investigating the relationships between features and aesthetics.
Previous studies have highlighted relationships between beauty
ratings and low spatial frequencies (Soen et al., 1987; Kawamoto
and Soen, 1993; Schira, 2003) or between pleasure and
color information (Valdez and Mehrabian, 1994). We have
confirmed that these relationships are present, and have
extended the findings to patterned stimuli, rather than only
completely uniform stimuli. The relationships we found between
color information and beauty ratings agree with those found
by Valdez and Mehrabian (1994) in the sense that more
saturated and more intense colors are rated as being more
beautiful. A relationship between intensity variation and
artistic merit has previously been reported by Juricevic et al.
(2010), and our findings generalize this finding to beauty
ratings; also Spehar and Taylor (2013) and Spehar et al.
(2015) found results similar to those of Juricevic et al.
(2010).

It is interesting to compare the features we found with
the features that were found to predict liking ratings in Liu
et al. (2015), who used similar stimuli and computed an
almost identical set of features, but used a different method
of feature selection, namely a so-called Laplacian score. Both

studies found that saturation is an important feature. Other
features are different but highly related. For example, Liu et al.
found that both Tamura coarseness and Tamura contrast were
important, while our study found that Tamura roughness was
important. Since Tamura roughness is high when both Tamura
coarseness and Tamura contrast are high, it can be seen that
the outcomes are very similar. Similarly, both Liu et al. (2015)
and we find that high contrast at diagonal orientations is
associated with beauty and liking. The difference is that Liu
et al. (2015) find this with features based on the gray-level
co-occurrence matrices (GLCMs), while we found this with
Gabor-features. Finally, both studies found that low spatial
frequencies predict higher preference, again through different
features. While Liu et al. find several low-frequency GLCM-
features, we find instead several low-frequency Fourier features
(c_energy2 and c_energy3) and low-frequency Gabor features
(O∗s1). Overall, the correspondences between these outcomes
are high, and the small differences can presumably be attributed
to minor differences in stimulus selection, analysis procedure,
and maybe the slightly different judgments observers had
to make.

Some of the features employed in our study were designed
to capture the roughness of textures, as is apparent from their
names: roughness and coarseness. Surprisingly, these features
appeared to bear little relation to the roughness ratings. Features
that emerged with much stronger relationships to the roughness
ratings were the uniformity measures, called ‘‘angular second
moment features’’ (based on the GLCM). These features should
be regarded as reflecting the smoothness-roughness information
more effectively than any of the other features that we computed.
The other feature factor that emerged was average intensity.
A lower average intensity was related to higher roughness
ratings. One way to explain this finding is that weathered, rough
surfaces tend to be of low intensity, whereas unscratched, shiny
surfaces tend to reflect much light and are consequently rated as
smooth.

Limitations of the Current Study and
Future Directions
This study was exploratory in nature. As such, confirmation
of the relationships we have found is desirable, for example
by selectively manipulating the features that we reported as
important for beauty and roughness judgments. Moreover,
our analyses were performed on average data, over groups
of subjects. In reality, there is no such thing as an average
observer (Güçlütürk et al., 2016), so it may be worthwhile
to investigate inter-individual and cross-cultural differences.
For example, Van Egmond et al. (2009) found that some
people prefer rough surfaces, while others prefer smooth
surfaces, which may result in orthogonality between the
judgments when aggregating over participants, as we did. By
performing cluster analysis on the raw judgments (Güçlütürk
et al., 2016) and subsequently performing factor analysis
on clusters of participants, different patterns of responses
may be discovered, an approach we may pursue in the
future.
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Our exploratory study enabled us to examine the effects
of many computed visual texture features simultaneously. This
allowed us to find features that influence beauty and roughness
ratings that have not been reported before. But a limitation
of this exploratory approach is that we did not systematically
vary certain features, while controlling for the effects of others.
Hence, it is possible that the features that grouped together
on our feature factors did this not because of an inherent
relationship between the features, but because they tend to be
grouped together in our stimulus set, possibly because certain
features tend to co-occur in real life. An example of the latter
is our feature factor with high loadings of saturation and
redness. Clearly, stimuli can be designed to have unsaturated
red, so that the effects of both features can be dissociated.
Indeed, an earlier study found that saturation is the main factor
influencing preference (Valdez and Mehrabian, 1994). Hence,
it is possible that saturation rather than redness is the feature
responsible for the relationship of our color factor to the beauty
ratings.

Future research could address the role that context plays
in determining preferences. Numerous factors could play a
role, such as the cultural or professional background of the
participants. Indeed, an initial report on socio-cultural influences
on aesthetics ratings has appeared (Zhang et al., 2006), pointing
to the malleability of the aesthetic response. The spatial context
may also play a role. In our experiments, textures were always
presented in isolation and surrounded by a gray background. In
real life, textures occur in complex environments and are often
part of objects. Results might be affected by the presence of such
aspects.

Even though there is evidence that semantics provide a strong
cue to preferences (Martindale et al., 1990), future research into
the affective processing of photographs and paintings should
take into account the idea that the texture features present
in such material may exert a substantial influence on beauty
ratings.

Beauty is Still in the Eye and Brain of the
Beholder
Philosophers such as Plato (2000) and Hutcheson (1973)
debated whether beauty is objective and inherent in the objects
around us, or whether we impose beauty on the objects
around us. The systematic relationships between features and
judgments could be taken as evidence for Plato’s point of
view. However, we like to adhere to the notion that beauty
is computed by our brains based on signals coming from
our senses and is therefore imposed by us on the objects
in our environment. How can these distinctive viewpoints

be reconciled? Our study has revealed systematic affective
responses across participants to certain visual features present
in textures. We suggest that prior experience of a person with
certain stimuli (e.g., during early childhood) may influence
his or her affective responses to similar stimuli encountered
later in life. Hence, we propose that the systematicity that we
have uncovered is the result of common factors in human
ontogeny. However, we cannot exclude additional influences
from phylogeny.

CONCLUSION

A two-dimensional judgment space sufficed to capture most of
the variability in perceived texture qualities, which suggests that
observers use a relatively limited set of internal scales on which
to base various judgments, including aesthetic ones.

For both axes of this judgment space, represented by
judgments of beauty and roughness, we found that a
number of computational texture features correlate well
with these judgments. This suggests that perceived texture
qualities—including the aesthetic appreciation—are sufficiently
universal to be predictable based on the computed feature
content of textures.
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