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Clinical resistance to crenolanib in acute myeloid
leukemia due to diverse molecular mechanisms
Haijiao Zhang1,2, Samantha Savage1,2, Anna Reister Schultz 1,2, Daniel Bottomly4, Libbey White 4,

Erik Segerdell4, Beth Wilmot 4, Shannon K. McWeeney 4, Christopher A. Eide2,3, Tamilla Nechiporuk1,2,

Amy Carlos5, Rachel Henson5, Chenwei Lin5, Robert Searles5, Hoang Ho6, Yee Ling Lam6, Richard Sweat6,

Courtney Follit6, Vinay Jain6, Evan Lind7, Gautam Borthakur8, Guillermo Garcia-Manero8, Farhad Ravandi8,

Hagop M. Kantarjian8, Jorge Cortes8, Robert Collins 9, Daelynn R. Buelow10, Sharyn D. Baker10,

Brian J. Druker 2,3 & Jeffrey W. Tyner1,2

FLT3 mutations are prevalent in AML patients and confer poor prognosis. Crenolanib, a

potent type I pan-FLT3 inhibitor, is effective against both internal tandem duplications and

resistance-conferring tyrosine kinase domain mutations. While crenolanib monotherapy

has demonstrated clinical benefit in heavily pretreated relapsed/refractory AML patients,

responses are transient and relapse eventually occurs. Here, to investigate the mechanisms

of crenolanib resistance, we perform whole exome sequencing of AML patient samples

before and after crenolanib treatment. Unlike other FLT3 inhibitors, crenolanib does not

induce FLT3 secondary mutations, and mutations of the FLT3 gatekeeper residue are infre-

quent. Instead, mutations of NRAS and IDH2 arise, mostly as FLT3-independent subclones,

while TET2 and IDH1 predominantly co-occur with FLT3-mutant clones and are enriched

in crenolanib poor-responders. The remaining patients exhibit post-crenolanib expansion of

mutations associated with epigenetic regulators, transcription factors, and cohesion factors,

suggesting diverse genetic/epigenetic mechanisms of crenolanib resistance. Drug combi-

nations in experimental models restore crenolanib sensitivity.
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Acute myeloid leukemia (AML) is a group of heterogeneous
hematologic malignancies characterized by numerous
cytogenetic and molecular alterations. Activating muta-

tions in the FMS-like tyrosine kinase 3 (FLT3) gene represents the
most frequent molecular abnormality in AML1,2. The majority of
the mutations in FLT3 are internal tandem duplications (ITD),
which are identified in approximately 30% of AML patients and
are associated with a higher propensity for disease relapse and a
shorter overall survival3,4, even after stem cell transplantation5.
FLT3 point mutations in the activation loop of the tyrosine kinase
domain (TKD), predominantly at residue D835, are found in an
additional 7% of patients with uncharacterized prognosis6,7.

A growing number of small-molecule FLT3 tyrosine kinase
inhibitors (TKIs) have been evaluated in preclinical experiments
and clinical trials, but only one agent (midostaurin) has been
recently approved for this specific use. Many of the first-
generation FLT3 inhibitors including midostaurin, lestaurtinib,
sunitinib and sorafenib have been limited by their suboptimal
efficiency and sustainability as a single drug therapy8,9. However,
recent clinical trials with some of these agents, notably mid-
ostaurin, have revealed durable improvements in patient outcomes
when administered at diagnosis in combination with standard of
care chemotherapy10,11. The second-generation inhibitors,
including quizartinib, pexidartinib, gilteritinib and crenolanib,
have demonstrated enhanced potency and selectivity when
administered as single-agent therapies12–18. Compared to other
FLT3 TKIs, crenolanib demonstrates several appealing char-
acteristics to target FLT3 mutations in AML. As a potent type I
pan-FLT3 inhibitor, crenolanib retains activity against FLT3 TKD
mutations19, which have been shown to be the major resistance
mechanisms for quizartinib and sorafenib20–24. Therefore, cre-
nolanib is a candidate therapy for de novo AML patients with
FLT3 TKD mutations as well as relapsed patients with TKD
mutations acquired after treatment with other FLT3 TKIs25.

Crenolanib has been evaluated in two phase II clinical trials in
chemotherapy or TKI refractory/relapsed AML patients with
FLT3 mutations. Cumulatively, a high response rate (complete
response with incomplete blood count recovery (CRi) of 37%, and
partial response (PR) of 11% in prior TKI-naive group; 15%
complete response (CR)/CRi and 13% PR in prior TKI group)
was achieved with crenolanib single-agent therapy.26 Details of
the clinical trials are reported elsewhere14,25,26. However, similar
to other FLT3 TKIs observed in early clinical trials, despite initial
response, subsequent drug resistance and disease relapse occurred
in the majority of patients8,9,14,25,26. We, therefore, performed
whole exome sequencing (WES) and targeted deep sequencing on
a series of samples from crenolanib-treated patients to investigate
the relationship between drug resistance and genetic signatures
(data can be explored and visualized in our Vizome, online data
browser (www.vizome.org)). We were initially interested in
investigating whether crenolanib resistance followed similar
mechanisms as other FLT3 TKIs (quizartinib, gilteritinib and
sorafenib)27–30, where secondary FLT3 mutations in the activa-
tion loop and/or gatekeeper residue play a major role. Given the
nature of heterogeneous genetic alterations and selective pressure
of chemotherapy and prior TKI treatment in relapsed/refractory
AML patients on these trials, we also aimed to characterize the
impact of co-occurring clones or subclones with other somatic
mutations on crenolanib response and disease recurrence.

We observed that crenolanib-resistant FLT3 secondary muta-
tions (one patient with K429E mutation and two patients with
gatekeeper mutations) are infrequent. The majority of patients
exhibited a diverse spectrum of mutations associated with chro-
matin modifiers, cohesion, spliceosomes and transcription factors,
which mostly expanded during treatment, suggesting an elaborate
genetic/epigenetic mechanism of resistance to crenolanib.

Results
FLT3 secondary mutations are infrequent. We first determined
whether secondary FLT3 mutations were acquired during treat-
ment by sequencing available patient samples obtained after at
least 28 days of crenolanib treatment as well as baseline samples
obtained before crenolanib treatment initiation. Consistent with
previous reports, no de novo activation loop mutations were
detected in FLT3-ITD patients after crenolanib treatment as
determined from 18 FLT3-ITD patients sequenced by exome
sequencing (mean ± standard error of the mean (SEM) coverage
is 177 ± 24) and 6 FLT3-ITD patients sequenced by Miseq (cov-
erage 232,809 ± 9388)31. Variant allele frequencies (VAFs) of
FLT3 D835 or FLT3-ITD were eliminated or cleared in 11 out of
21 or 11 out of 39 patients, respectively; and maintained or
expanded in the rest of patients (Supplementary Data 1-2). FLT3
F691 mutations were detected in two patients (Fig. 1a). Both
patients were previously treated with quizartinib and one patient
harbored 17% VAF of FLT3 F691L prior to crenolanib treatment.
Consistent with previous studies14,20,23,25,26, low VAFs of non-
D835 FLT3 secondary mutations A833S, D839Y/G, N841K and
Y842C and a small insertion/deletion (R834D835I836 (RDI->RP)
were detected at baseline and eliminated during the course of
crenolanib treatment (Fig. 1a and Supplementary Table 1). Four
FLT3 point mutations (D200N, K429E, Y572C and L601F) were
maintained after crenolanib treatment in four individual patients.
Y572C was previously reported to be transforming32.

To characterize the leukemogenic and drug-resistant potential,
FLT3 wild-type (WT) and point mutations were introduced into
Ba/F3 cells and evaluated by interleukin-3 (IL-3) withdrawal
assay and drug sensitivity profiling. As expected, FLT3 D835Y
(positive control) and Y572C transformed Ba/F3 cells (Fig. 1b).
FLT3 K429E was also observed to transform Ba/F3 cells, although
with slower kinetics compared to FLT3 D835Y and Y572C
(Fig. 1b). The other two mutations (D200N and L601F) and the
gatekeeper mutation F691L did not transform Ba/F3 cells.

In drug profiling assays, FLT3 K429E expressing Ba/F3 cells
demonstrated reduced crenolanib sensitivity compared to
Molm14 cells and Ba/F3-FLT3 D835Y, whereas FLT3 Y572C
expression in Ba/F3 cells had no effect on the crenolanib dose
response curve compared with FLT3 D835Y cells (Fig. 1c).
Accordingly, bone marrow (BM) cells expressing FLT3 K429E
were less sensitive to crenolanib compared with cells expressing
FLT3 D835Y (Supplementary Figure 1a). To determine whether
FLT3 mutations that did not transform Ba/F3 cells could confer
resistance to crenolanib, we generated double mutant FLT3-
D200N/D835Y, K429E/D835Y, L601F/D835Y and F691L/D835Y
(Fig. 1d). As expected, these mutations all transformed Ba/F3 cells
(Supplementary Figure 1b). Consistent with the FLT3 K429E
transformed cells, FLT3 K429E/D835Y transformed cells showed
decreased crenolanib sensitivity, although it did not confer the
same degree of crenolanib resistance as the gatekeeper, FLT3
F691L/D835Y mutation (Fig. 1d, e). FLT3 D200N/D835Y and
FLT3 L601F/D835Y both showed similar crenolanib sensitivity as
FLT3 D835Y (Fig. 1d, e) suggesting that these mutations are
passenger mutations and do not contribute to crenolanib
resistance. This is also consistent with their presence prior to
crenolanib therapy and VAFs that were unchanged over the
course of therapy (Fig. 1a).

Differential mutation profiles in prior TKI-treated patients.
Since prior FLT3 inhibitor treatment was also identified as an
adverse prognostic factor of crenolanib clinical response26, we
compared the mutational profiles of these patients (pre-TKI) to
patients who had not received prior TKI therapy (TKI naive)
(Supplementary Table 2-3 and Supplementary Data 3-4).
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Available data from the targeted gene panel and/or WES of 50
patients before crenolanib treatment were analyzed and recurrent
variants within 24 commonly mutated genes were detected
(Fig. 2a, b and Supplementary Data 1). The average number of
pathogenic variants was highest among the pre-TKI group, while
similar frequencies were observed between the TKI-naive and the
de novo AML cases reported in The Cancer Genome Atlas
(TCGA; Fig. 2d and Supplementary Table 8). Consistent with
previous studies24, higher frequencies of FLT3-ITD and FLT3
TKD combination mutations were observed in the pre-TKI group
(Supplementary Figure 2). Furthermore, the frequency of NRAS,

KRAS, RUNX1, IDH1, WT1, TET2 truncation and ASXL1
mutations were higher in the pre-TKI group (Fig. 2b).

Differential mutation profiles in crenolanib poor responders.
We next compared the coexisting mutation profiles between dif-
ferent crenolanib response groups. We observed that the average
number of mutations at trial entry was higher for crenolanib
poor responders (hematological improvement (HI)+resistant dis-
ease (RD)) compared to crenolanib good responders (CR/CRi
+PR) (Fig. 2c). Furthermore, higher frequencies of NRAS, TET2,
IDH1, IDH2, U2AF1, STAG2, KRAS, CSF3R, TET2 truncation
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Fig. 1 FMS-like tyrosine kinase 3 (FLT3) K429E demonstrates reduced crenolanib sensitivity. a Variant allele frequency (VAF) of non-D835 FLT3 mutations
during crenolanib treatment. Low VAFs of FLT3 A833S, D839Y/G, N841K, Y842C/D and delIns were detected at baseline, and these mutation clones were
eliminated during the course of crenolanib treatment. FLT3 F691L mutations were detected in two patients previously treated with quizartinib. Four FLT3
mutations (D200N, K429E, Y572C and L601F) were identified at the time of treatment termination in four individual patients. DelIns: R834D835I836
(RDI–−>RP). b FLT3 K429E transforms Ba/F3 cells. Ba/F3 cells expressing empty vector, FLT3 wild-type (WT) and mutants were grown in medium
without interleukin-3 (IL-3) and cells were counted every other day for 12 days. c, d Ba/F3 cells expressing FLT3 K429E and FLT3 K429E/D835Y
demonstrate reduced crenolanib sensitivity. Graphs depict mean ± SEM of cell viabilities of Ba/F3 cells expressing empty vector, FLT3 WT or mutants
treated with dose gradients of crenolanib for 72 h determined by MTS. e Mean ± SEM of crenolanib half-maximal inhibitory concentration (IC50) and 90%
inhibitory concentration (IC90) values of Ba/F3 cells transformed with FLT3 WT and mutants as presented in c, d. Graphs and images shown are
representatives from six experiments. Statistical significance was assessed using one-way analysis of variance (ANOVA) and Kruskal–Wallis test
comparing each condition to the respective FLT3 D835Y and expressed as: *p < 0.05; **p < 0.01
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and ASXL1 mutations were present in poor responders compared
with crenolanib good responders prior to crenolanib treatment
(Fig. 2e, Supplementary Table 4 and Supplementary Figure 3).
We did not observe an association of FLT3 mutation status (ITD
vs. TKD vs. ITD+TKD) with crenolanib response (Supplemen-
tary Table 4 and Supplementary Figure 3). Changes in VAF were
then analyzed from available paired samples to identify new or
expanded clones during crenolanib treatment. We observed that
the majority of TET2, DNMT3A, RUNX1, U2AF1, SF3B1 and
IDH1 mutations were present with approximately 50% VAF, and
the VAFs remained unchanged during crenolanib treatment
(Fig. 2f), indicating they were present in the founder clone and
may not be sensitive to crenolanib treatment. VAFs of variants of
NRAS, BCOR, STAG2, CEBPA and ASXL1 increased during
crenolanib treatment, suggesting these mutations may contribute
to a clonal selection mechanism of drug resistance. We observed
both the expansion and reduction of NPM1 and WT1 mutations
during crenolanib treatment, indicating these mutations alone
may not be sufficient to render drug resistance. Interestingly, loss
of heterogeneity and VAF expansion were observed in two
DNMT3A, one WT1, and one RUNX1 mutation at crenolanib
resistance, suggesting they might contribute to disease resistance.
Surprisingly, VAF of CSF3R (5 out of 5) and JAK3 (1 out of 1)
and PTPN11 (2 out of 4) mutations dropped to undetectable
levels during crenolanib treatment (Fig. 2f). Of note, multiple
other gene mutations were present in these samples. There might
be two possible explanations for this phenomenon: crenolanib
may be able to inhibit CSF3R, JAK3 and PTPN11 mutation clones
due to targeting kinases other than FLT3 (e.g., Janus kinases
(JAKs), mitogen-activated protein kinase (MAPK) pathway); or
CSF3R, JAK3 or PTPN11 mutation clones were suppressed by
other more aggressive outgrowth clones with differing mutational
profiles. Since crenolanib targets platelet-derived growth factor
receptor (PDGFR) and FLT3 with high specificity and there are
two patients clearly showing PTPN11 mutations expansion at
disease relapse (A14 and B27), the second model appears more
likely. Nonetheless, these data indicate that CSF3R and JAK3
mutations do not harbor high growth advantage during creno-
lanib treatment in the presence of other clones, and mutations in
these genes are unlikely to confer crenolanib resistance, whereas
PTPN11 mutations could be repressed or acquired during cre-
nolanib treatment and contribute to drug resistance.

Subclonal RAS mutations contribute to crenolanib resistance.
Since mutations in RAS signaling pathway genes (NRAS,
PTPN11, KRAS and CBL) are enriched in crenolanib poor
responders and/or pre-TKI group (Fig. 2b, e), and/or expanded or
acquired during crenolanib treatment (Fig. 2f), it is likely they can
confer crenolanib resistance.

To determine whether these mutations co-occur with FLT3
mutations within the same clone or occur in an independent FLT3
WT clone, we compared the absolute VAF and the direction of
VAF change of these gene variants with respect to absolute VAF
and VAF changes of the FLT3 mutations. For example, if the VAF
of the RAS pathway gene and the FLT3 mutations are both greater
than 50%, or if a lower baseline VAF of the RAS pathway
mutation changes in the same trajectory as the FLT3 mutation
after crenolanib therapy, we can assume that they have a high
probability of occurring within the same leukemic clone. In this
manner, we observed that the majority of the NRAS and KRAS
pathway mutations were present in independent clones not
harboring the FLT3 mutations (Fig. 3a). However, we did observe
that one NF1 and two CBL mutations co-occurred with FLT3
mutations in the same clone. Three out of four PTPN11mutations
(A14, A16 and A15) appear to co-occur with FLT3 TKD or ITD

mutations. We, therefore, analyzed the drug response profile of
cells harboring FLT3 and RAS pathway compound mutations by
introducing FLT3 D835Y and PTPN11 A72D into Ba/F3 cells.

Significantly increased crenolanib half-maximal inhibitory
concentration (IC50) and 90% inhibitory concentration (IC90)
were observed in PTPN11 A72D/FLT3 D835 co-transduced cells
relative to PTPN11 WT/FLT3 D835 cells (Fig. 3b, c). Consistently
reduced crenolanib sensitivity was observed in MV4–11 cells
expressing PTPN11 A72D compared to PTPN11 WT and
controls (Supplementary Figure 2a). To circumvent the compro-
mised drug sensitivity of cells harboring these compound
mutations, we combined crenolanib with the MEK inhibitor,
trametinib. PTPN11 WT/FLT3 D835 and PTPN11 A72D/FLT3
D835 cells did not respond to trametinib single-agent exposure at
low concentrations (Supplementary Figure 2b-c). However, a
synergistic effect of trametinib in combination with crenolanib
was observed against PTPN11 A72D/D835Y cells and to a lesser
degree against FLT3 D835Y only or PTPN11 WT/FLT3 D835Y
cells (Fig. 3b, c and Supplementary Figure 4b-d).

Concomitant TET2 mutations confer crenolanib resistance.
Five patients with TET2 frameshift/nonsense mutations demon-
strated adverse prognosis, whereas four other patients with TET2
missense mutations did not show a higher incidence of unfa-
vorable response to crenolanib (Fig. 4a and Supplementary
Table 6), suggesting that TET2 truncation mutations may con-
tribute to crenolanib resistance. VAF analysis demonstrated co-
occurrence and persistence of TET2 and FLT3 mutations, indi-
cating up-front drug resistance for cases harboring FLT3/TET2
compound mutations at the start of therapy. These findings are
consistent with recent work showing TET2 mutations contribute
to quizartinib resistance in mouse models33. To further test this
hypothesis, we performed a drug sensitivity assay with BM stem/
progenitor cells from Flt3-ITD knock-in (Flt3ITD) and Flt3-ITD
knock-in/Tet2 knockout mice (Flt3ITD; Tet2+/−). We observed
that Flt3ITD; Tet2+/− progenitor cells did not respond to creno-
lanib at 10 or 100 nM, whereas Flt3ITD cells responded well at
these drug concentrations (Fig. 4b–d). These data confirmed that
FLT3-ITD, in concert with TET2 loss of function, is resistant to
the single-agent FLT3 inhibitor. Excitingly, Flt3ITD; Tet2+/− cells
demonstrated sensitivity to azacytidine, and cell differentiation
analysis demonstrated a clearance of Sca1+ progenitor cells with
azacytidine in both Flt3ITD and Flt3ITD; Tet2+/− mouse BM
stem/progenitor cells (Supplementary Figure 3).

IDH1 and IDH2 mutations contribute to crenolanib resistance.
Higher frequencies of IDH1 and IDH2mutations were observed in
the pre-TKI and crenolanib poor responder groups (Fig. 2b–f),
indicating IDH1 and IDH2 mutations might be associated with
TKI treatment resistance. IDH1mutations co-occurred in the same
clone with FLT3-ITD/TKD mutations in five patients (B01, B07,
B34, B32 and B16), whereas the IDH2mutations were highly likely
to be in FLT3-ITD/TKD independent clones in two patients (A08
and B04) and possibly co-occurred with FLT3-ITD in one patient
(B06) (Fig. 5a). To investigate whether co-occurring IDH1 muta-
tions perturb crenolanib sensitivity, we performed drug profiling of
cells harboring both mutations. We did not observe decreased
crenolanib sensitivity in FLT3-ITD stem cells transduced with
IDH1 R132H compared to FLT3-ITD cells transduced with IDH1
WT (Fig. 5b). We observed that cells harboring IDH1 R132H/
FLT3 D835Y demonstrated similar crenolanib sensitivity as IDH1
WT/D835Y cells (16.2 ± 8.0 nM vs. 18.9 ± 13.9 nM) (Fig. 5c).
Consistent with previous studies, an IDH1 inhibitor as a single
agent did not impact on cell viability. However, the IDH1 inhibitor
(AG5198) did enhance crenolanib sensitivity (Fig. 5d and
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Supplementary Figure 6). Further validation from similar clinical
trials and from in vivo experiments studying TKI sensitivity in
Idh1 mutation and Flt3-ITD double knock-in mice are needed.

Concomitant TP53 mutations confer crenolanib resistance.
TP53 pathway mutations are mutually exclusive with FLT3
mutations in de novo AML and were shown to be related to FLT3
inhibitor resistance34,35. Interestingly, we observed one TP53
mutation and one PPM1D mutation that co-occurred with FLT3-
ITD and/or FLT3 TKD in two individual patients with crenolanib
poor response. To test whether TP53 loss of function confers
crenolanib resistance, we performed a knockout of TP53
expression in Molm13 cells using the clustered regularly inter-
spaced short palindromic repeats (CRISPR)/CRISPR-associated
9 (Cas9) system (Supplementary Figure 7). We observed sig-
nificant reduced crenolanib sensitivity (Fig. 5e–g) of TP53
knockout cells. Further drug combinations involving FLT3 TKI-
and TP53-based cancer therapy are warranted in patients har-
boring FLT3 and TP53 combination mutations.

Mutation spectrum and clonal pattern of crenolanib-treated
samples. Overall in this crenolanib-treated patient cohort, 5.9%
(3/51) of patients demonstrated FLT3 secondary mutations; 9.8%
(5/51) of patients showed concomitant TET2 truncation muta-
tions; 29.4% (15/51) of patients demonstrated mutations in
alternative signaling pathways; 19.6% (10/51) demonstrated
IDH1/2 mutations; 3.9% (2/51) demonstrated TP53 and PPM1D
mutation, and another 23.5% (12/51) of patients demonstrated

cohesion, splicing factor, epigenetic and/or transcription factor
mutations (Fig. 6a).

In general, the clonal evolution patterns observed from this
series of patient samples could be classified into three distinct
groups. The first pattern is of a primary drug refractory clone
(Fig. 6b). In this pattern, FLT3 mutations co-occur with other
drug-resistant gene mutations in the same clone and the VAF of
both mutations persist or increase during drug treatment. The co-
occurring mutations are normally present in the founder clone,
such as TET2, IDH1 and TP53 pathway mutations. In line with a
previous study33 and the data shown here, the patient presented in
Fig. 6b exhibited both FLT3-ITD and TET2 mutations that co-
occurred, and this concomitant mutation pattern was completely
resistant to crenolanib. These data support the notion that up-front
drug combinations may be useful to target certain mutational
patterns, such as FLT3 and TET2 co-occurring mutation. The
second pattern is acquisition or expansion of additional mutations
in the context of a FLT3 mutation with either an original,
dominant FLT3-mutant clone that exhibits new mutations at the
time of drug resistance or a minor FLT3-mutant clone with
additional mutations that expands during crenolanib treatment
(Fig. 6c). Deep sequencing of samples at the start of FLT3 inhibitor
therapy could identify problematic coexisting mutations and apply
drug combinations that pre-emptively target the expanding clone.
The third pattern is the acquisition of leukemic clones independent
of the clone with the FLT3 mutation (Fig. 6d). In this pattern, the
VAF of FLT3 mutations decreased, whereas drug-resistant sub-
clones within a FLT3 WT clone emerged or expanded and became

10 100 1000

40

IC
-5

0 
(n

M
)

* *

Crenolanib
Crenolanib + Trametinib

30

20

10

0

FL
T3

 D
83

5Y

PTP
N11

 W
T

/F
LT

3 D
83

5Y

PTP
N11

 A
72

D

/F
LT

3 D
83

5Y

–50

0

50

100

150

PTPN11 WT/D835Y

PTPN11 WT/D835Y + Trametinib

PTPN11 A72D/D835Y

PTPN11 A72D/D835Y + Trametinib

FLT3 D835Y + Trametinib

FLT3 D835Y

Crenolanib concentration (nM)

V
ia

bi
lit

y 
(%

)

a

b c

0

B19
 N

RAS

A03
 N

RAS

B27
 N

RAS

A16
 N

RAS

B30
 N

RAS

B33
 N

RAS

B30
 K

RAS

B04
 K

RAS

A14
 P

TPN11

A16
 P

TPN11

A15
 P

TPN11

B08
 N

F1

A07
 N

F1

A05
 C

BL

B23
 C

BL

B27
 P

TPN11

V
A

F
 (

%
) 50

100
PR

Timepoint 1

ITD

Variant of specific gene

TKD
Timepoint 2

Timepoint 3

HI CRi CRiRD RD RD RD RDPR PRHI HI HI HI HI

Fig. 3 RAS pathway mutations contribute to crenolanib resistance and disease relapse. a The graph depicts variant allele frequencies (VAFs) of FLT3-ITD/
TKD and RAS pathway mutations during crenolanib treatment. b Graph depicts higher mean ± SEM of cell viabilities of crenolanib-treated PTPN11 A72D/
FLT3 D835Y Ba/F3 cells in comparison to PTPN11 WT/ FLT3 D835Y co-expressing Ba/F3 cells and FLT3 D835Y-alone expressing Ba/F3 cells determined
by MTS assay. c Graph depicts mean ± SEM of crenolanib half-maximal inhibitory concentration (IC50) in (b). Data shown are from five biological
replicates. Statistical significance was assessed using one-way analysis of variance (ANOVA) together with Dunn’s multiple comparisons tests and
expressed as: *p < 0.05

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08263-x

6 NATURE COMMUNICATIONS |          (2019) 10:244 | https://doi.org/10.1038/s41467-018-08263-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the dominant leukemic clones. This group could be observed as
initial crenolanib good responders, where the decrease of the FLT3
mutation VAF at relapse suggests that crenolanib is effective at
eradicating or controlling the FLT3-mutant leukemic clone. Again,
up-front or follow-up deep sequencing to identify potential sub-

clones with resistant mutations could be helpful. Combination or
sequential treatment with drugs targeting the expanding clones
could prove effective in the future. In our patient cohort, NRAS,
STAG2, CEBPA, IDH2 and ASXL1 mutation clones are common
FLT3-independent drug-resistant clones.
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Discussion
Small-molecule targeted TKIs have revolutionized cancer treatment
with a fast, selective and robust response and are being increasingly
used in clinical settings. Strikingly, in the current clinical trial,
crenolanib achieved good responses in around 28% of patients who
failed multiple other FLT3 inhibitors14,25,26. However, like many

other TKIs, the acquisition of drug-resistant clones through selec-
tive pressure eventually led to disease relapse. A detailed under-
standing of the molecular changes associated with drug resistance is
critical for identifying prognostic markers and additional targets to
circumvent drug resistance and ultimately benefit FLT3-mutant
AML patients with durable therapeutic responses.
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Previous studies suggest that a common drug-resistant
mechanism of TKI treatment is secondary mutations of the tar-
geted kinase itself which could be classified into two major
groups21. The first group is TKD mutations, which are specifically
resistant to type II FLT3 TKIs including quizartinib, sorafenib,
ponatinib and pexidartinib36–41. FLT3 N676K was first char-
acterized to confer resistance to midostaurin and more recently
also shown to contribute to resistance to quizartinib22,42. Point
mutations at residues D835, I836 and Y842 have been shown to
be predominantly associated with quizartinib and sorafenib
resistance20–22,43. The second group is mutations on the gate-
keeper residue of the targeted kinases. Gatekeeper mutations
enhance the binding affinity of adenosine triphosphate (ATP)
which competes with TKIs to bind to the ATP binding pocket,
thereby preventing TKI binding to the kinase and rendering
resistance to the TKI treatment44. FLT3 F691L was shown to be
resistant to the majority of FLT3 TKIs including crenolanib, but
not ponatinib and pexidartinib36,39,45. One study showed that 3
out of 8 quizartinib-treated patients27 and 3 out of 16 and 4 out of
20 giltertinib-treated patients acquired a FLT3 gatekeeper
mutation29,30. In vitro saturation assays have been widely used to
screen and identify secondary drug resistance mutations. Previous
studies showed that only two recurring mutant clones out of
300 × 106 initial clones screened were retained in the presence of
crenolanib (100 nM)25. Consistent with the in vitro saturation
assay, as a type I TKI, crenolanib did not induce novel FLT3
secondary TKD mutations, and only two crenolanib-treated
patients demonstrate gatekeeper mutations in our study cohort.
In addition, a novel FLT3 extracellular mutation at K429E was
detected in one patient with high VAF, which showed increased
crenolanib IC50. The structural basis for the drug resistance of
FLT3 K429E requires further investigation.

Another drug resistance mechanism of TKIs is expansion or
activation of alternative signaling pathways33,35,46–48. Comparing
the mutation profiles of chronic myeloid leukemia (CML) and
AML patients may provide clues as to the mechanisms allowing
BCR-ABL TKIs to demonstrate a low incidence of relapse and
a long relapse-free latency. BCR-ABL was so far identified as
the exclusive driver mutation in CML. Recent studies have not
identified other recurrent mutations in a majority of CML
patients by exome sequencing49,50. However, AML is a highly
heterogeneous group of diseases exhibiting diverse coexisting
mutations with great potential to generate multiple subclones
during treatment1,2,51,52. In contrast to the mutual exclusivity of
FLT3-ITD and D835 mutations seen in de novo AML (TCGA
dataset), 35% of patients in TKI-naive postchemotherapy group
and 51.4% of pre-TKI patients in the current cohort harbored
both FLT3-ITD and D835 mutations26, suggesting that both
chemotherapy and type II FLT3 inhibitor treatment could select
drug-resistant FLT3 TKD clones. Furthermore, pre-TKI-treated
crenolanib refractory and resistant patients exhibited more
coexisting driver mutations compared to TKI-naive and crenola-
nib responders, respectively, suggesting a drug-resistant clone
selection or induction pressure of TKI, including crenolanib
treatment. In addition, previous studies have shown that FLT3-
ITD demonstrated mutual exclusivity with NRAS, KRAS, RUNX1,
SF3B1, TP53, SRSF2 and ASXL1 mutation in de novo AML51,
whereas in our current cohort, we observed high frequencies of
coexisting NRAS, KRAS, RUNX1, SF3B1, TP53, SRSF2 and ASXL1
mutations with FLT3 mutations respectively, suggesting a drug-
resistant clonal selection or induction pressure of previous
chemotherapy and/or previous TKI treatment.

Deciphering whether the drug treatment leads to the acquisi-
tion of resistance mutations, or whether resistance is indicative of
the expansion of pre-existing sub-clones under selective pressure,
is important to understanding drug resistance mechanisms that

may inform the design of better treatment regimens. New somatic
mutations were detected in 10/30 samples with available paired
samples, including mutations in NRAS (n= 1), PTPN11 (n= 2),
ABL1 (n= 1), FLT3 F691L (n= 1), ASXL1 (n= 1), BCORL1 (n
= 1), CEBPA (n= 1),WT1 (n= 1) and IDH1 (n= 1) (Fig. 6, dark
red). Notably, we did not detect the IDH1 mutation in B32 and
CEBPA mutation in A10 before crenolanib treatment by exome
sequencing. However, targeted gene panels detected the IDH1 and
the CEBPA mutation before crenolanib treatment. The rest of the
NRAS mutations as well as the majority of the mutations of IDH2,
RUNX1 and STAG2 were present before crenolanib treatment with
low VAF, and they expanded independently of the FLT3 muta-
tions. In contrast, mutations in TET2, U2AF1, SF3B1 and IDH1
were present in the same clone of FLT3 mutations before creno-
lanib treatment and maintained during drug treatment. These data
highlight the heterogeneity of AML clones and the expansion of
pre-existing sub-clones under TKI selective pressure. Several
alternative pathway mutation clones (Fig. 6, dark red) were not
detected prior to treatment, which might be due to the limitation
of current deep sequencing approaches to detect clones at very low
levels. A higher prevalence of NRAS and KRASmutations (26%) in
de novo AML patients was detected in a recent study using deep
targeted sequencing methods in comparison to 12% detected by
WES in the TCGA AML cohort, indicating RAS mutations are
frequently present in minor clones in de novo AML51. However,
prolonged drug could also induce alternative pathway mutations
shown by previous studies47,53,54 and two PTPN11 mutations in
the current study (A14 and B27). Nevertheless, future high cov-
erage sequencing methods before and during treatment may be
needed to uncover drug-resistant and low-level clones.

In some instances, previous studies have neglected to analyze
the co-occurrence or subclonal patterns of coexisting mutations.
It is expected that mutations with different oncogenic pathways
co-occurring in a distinct clone from the FLT3 mutations can
escape drug treatment and expand to become dominant clones.
However, when they occur in the same clone as the FLT3
mutation, the capacity of the concomitant clone to confer drug
resistance needs further validation. Determination of the muta-
tion co-occurrence pattern is important for understanding drug
resistance and developing alternative treatment strategies. By
analyzing the VAF dynamics, we could distinguish between co-
occurrence and independent sub-clone patterns. Consistent with
previous studies, we observed that TET2 mutations co-occurred
with FLT3 mutations and induced primary crenolanib resistance.
We also identified two patients with TP53 pathway mutations on
the same clone with FLT3 mutations. Previous studies have
shown that the loss of TP53 led to midostaurin resistance.34 In
line with this study, we observed that knockout of TP53 conferred
crenolanib resistance. In addition, we observed high co-
occurrence of IDH1 and FLT3 mutations in crenolanib poor
responders. Although we did not observe significant reduced
crenolanib sensitivity of double mutation comparing to single
mutation in ex vivo assays, this may be due to the models we used
not accurately reflecting the patient actual biological condition.
Furthermore, biologically relevant models are needed to assess
the drug sensitivity of the combination mutations. In contrast,
IDH2, BCOR, STAG2 and signaling pathway mutations (NRAS
and PTPN11) were present in subclones independent of FLT3
mutations and escaped during crenolanib treatment, resulting
in disease relapse. However, whether these mutations cause dis-
ease relapse alone or whether they cooperate with additional
uncharacterized gene mutations and how exactly these mutations
enable bypass of crenolanib inhibition are as-yet unknown.

Two major limitations of the current study must be noted.
First, the use of VAF to analyze clonal architecture might be
misinterpreted in cases where there is loss of heterozygosity and
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presence of biallelic mutations. More sensitive and accurate
sequencing methods, e.g. single cell sequence, allele-specific PCR
or digital PCR, are needed to validate the clonal architectural
data. Second, while AML is a highly heterogeneous disease with
various cytogenetic and genetic alterations, the sample size of the
current study is small. Future larger cohort studies are needed to
validate and identify more recurrent coexisting mutations that
confer crenolanib resistance.

Overall, we identify three distinct patterns of mutation
dynamics during crenolanib treatment. Each clonal evolutionary
pattern represents a distinct prognosis and indicates different
potential strategies to circumvent drug resistance. Our study also
provides clinical implications: comprehensive sequencing should
be carried out on patient samples at the start and during the
treatment in order to identify and pre-emptively target proble-
matic clones. Additionally, while single-agent therapy with FLT3
inhibitors may be of marginal clinical benefit to patients with
high VAF of FLT3 mutations, it is imperative to combine a FLT3
inhibitor with chemotherapy or agents targeting cooperative
lesions to achieve deep and durable remission.

Methods
Patients and samples. Samples were obtained with informed consent and
according to the Declaration of Helsinki under the institutional review board-
approved protocols from patients who were enrolled on Phase II clinical trials of
crenolanib (NCT 01522469 and NCT 01657682) in relapsed or refractory AML at
the University of Texas Southwestern Medical Center and MD Anderson Cancer
Center. Details of the clinical trials and results are summarized elsewhere.

Assessment of outcomes. Complete response was adapted according to the
International Working Group Criteria for AML and key criteria were defined as
follows: CR was defined as ≤5% blast in the borrow marrow, no circulating blasts,
with complete blood count recovery (neutrophil count ≥1000/μL and platelet count
≥100,000/μL). CRi required the same criteria as CR with incomplete count recovery
(neutrophil count <1000/μL and platelet count <100,000/μL). PR required all the
hematologic values of CR with a decrease of ≥50% bone marrow blast but still >5%.
HI was defined as ≥50% blast reduction in peripheral blood or bone marrow.

Whole exome sequencing. WES was performed as previously described55 and
summarized in a reporting summary statement as a Supplementary Information
file. Briefly, DNA was extracted from leukemia patient specimens using Qiagen
DNeasy according to the manufacturer protocols. For exome sequencing we used
the Illumina Nextera capture probes and protocol (12 samples per capture group
with each sample run on 3, 5 or 6 lanes) with libraries run on a HiSeq 2500 using
paired-end 100 cycle protocols. Initial data processing and alignments were per-
formed using our in-house workflows that we describe here briefly. For each
flowcell and each sample, the FASTQ files were aggregated into single files for reads
1 and 2. BWA MEM version 0.7.10-r78956 was used to align the read pairs for each
sample-lane FASTQ file. As part of this process, the flowcell and lane information
was kept as part of the read group of the resulting SAM file. The Genome Analysis
Toolkit (v3.3) and the bundled Picard (v1.120.1579) were used57 for alignment post
processing. The files contained within the Broad’s bundle 2.8 were used including
their version of the build 37 human genome. The following steps were performed
per sample-lane SAM file: (1) sorting and conversion to BAM via SortSam; (2)
MarkDuplicates was run, marking both lane level standard and optical duplicates;
(3) Read realignment around indels from the reads RealignerTargetCreator/
IndelRealigner; (4) Base Quality Score Recalibration. The resulting BAM files were
then aggregated by sample and an additional round of MarkDuplicates and indel
realignment was carried out at the sample level. For genotyping, single-nucleotide
variations (SNVs) and small indels were called using the UnifiedGenotyper and
VarScan258. Additionally, SNVs were called by MuTect59. Each VCF file was
annotated using the Variant Effect Predictor v8360 against GRCh37.

Variant calling. Since no paired normal tissue controls were available, we compiled
a list genes associated with human hematologic cancers according to these two
papers61,62. In total, 170 genes were selected (Supplementary Table 2). We used the
global filtering as previously described63. On top of that, the following filters were
used: (1) excluding variants found in more than 0.1% of ExAC samples; and
excluding variants found in normal samples from more than 20% Beat AML
normal controls; (2) including variant types: missense; frameshift; stop gain/loss;
inframe insertion/deletion; protein altering; and tandem duplication for 127 genes
list in Supplementary Table 1 (regular black font); (3) in addition, only frameshift,
stop gain/loss and inframe insertion/deletion variants are considered for the fol-
lowing 43 genes (bold red font).

Validation sequencing. DNA extraction was performed the same as the ‘WES’
procedure. Libraries were created and hybridized using custom designed Nimble-
gen (SeqCap EZ) probes covering genes of interest containing both known variants
and novel recurrent variants seen in other AML samples sequenced in-house.
Because of the smaller library size, we ran 12 samples per lane. Paired-end 100 base
reads were generated, aligned and post-processed using the WES protocol descri-
bed above. For each unique variant position observed in the WES data, the number
of reads supporting each observed allele in the validation library was determined
using bam-readcount56. A variant was considered to be ‘validated’ by sequencing
if there were at least three reads supporting the called variant.

FLT3-ITD quantification with PCR. FLT3 exons 14 through 20 were amplified
using forward primer 5’-GCAATTTAGGTATGAAAGCCAGC-3’ and reverse
primer 5’-CTTTCAGCATTTTGACGGCAACC-3’. The PCR products were then
run on a 2% agarose gel stained with ethidium bromide and visualized and imaged
under a Lummi imager (Roche Applied Science). The intensity of FLT3-ITD band
and WT band were quantified by Image Lab software. The FLT3-ITD VAF was
determined by calculating the ratio of FLT3-ITD to FLT3-ITD plus FLT3WT band
intensity.

MiSeq. Exon 17 and exon 20 of FLT3 were sequenced on serials samples from 20
patients to an average of 224,693 reads by MiSeq Next-Generation Sequencing
(Illumina) as previously described21,37 MiSeq data base calling accuracy was
measured by the Phred quality score (Q score, https://www.illumina.com/
documents/products/technotes/technote_Q-Scores.pdf). A Q score > 30 was used
allowing for a mutation calling threshold to be set at 0.1%. FLT3 exon 17 was
amplified from genomic DNA (gDNA) using forward primer 5’- TCCCCAAGTC
AGCAGAGAAC-3’ and reverse primer 5’-GTTGCAGGACCCACAGACTT-3’.
FLT3 exon 20 was amplified using forward primer 5’- TTCCATCACCGGTAC
CTCCTA -3’ and reverse primer 5’-CCTGAAGCTGCAGAAAAACC -3’.

Cell lines and reagents. HEK 293T/17 cells (provided by Dr. Richard Van Etten)
were maintained in Dulbecco's modified Eagle's medium (Invitrogen). Ba/F3 cells
(ATCC) were maintained in RPMI 1640 (Invitrogen) supplemented with 15%
WEHI-conditioned medium. Molm13, Molm14 and MV4–11 cells (DSMZ) were
maintained in RPMI 1640. All mediums were supplemented with 10–20% fetal
bovine serum (Atlanta Biologicals), L-glutamine, penicillin/streptomycin (Invitro-
gen) and fungizone (Fisher). Mycoplasma contamination was routinely tested
(once per month). Only mycoplasma-free cells were used in the experiments. The
cell lines were authenticated by internal FLT3-ITD PCR and small inhibitor
screening as well as short tandem repeat analysis.

Retroviral vector production and transduction. PTPN11 and IDH1 mutations
were generated using the QuikChange II XL site-directed mutagenesis kit (Agilent
Technologies) on the respective pENTR vectors (GeneCopoeia GC-Z2134 and
Invitrogen clone IOH11942) and cloned into a gateway compatible MSCV-IRES-
puromycin retroviral vector or a Tet-inducible lentiviral vector, pInducer20
(Addgene, #444012) via Gateway Cloning System (Invitrogen). Retrovirus was
produced by transfecting HEK 293T/17 cells together with an EcoPac helper
plasmid). Lentivirus was produced by transfecting HEK 293T/17 cells together with
psPAX2 (psPAX2 was a gift from Didier Trono (Addgene plasmid # 12260) and
pLP/VSVG (Invitrogen). After 2 days, the virus containing supernatants were fil-
tered, and infected to cells followed by flow cytometry (fluorescence-activated cell
sorting (FACS)) sorting or puromycin selection.

Ba/F3 IL-3 withdrawal assay. Stably transduced Ba/F3 cells (1 × 106) were
washed three times and cultured in cytokine-free media. Viable cell number was
determined on a Guava Personal Cell Analysis System (Millipore) every 1–2 days.

Colony-forming unit (CFU) assay. Bone marrow cells were harvested from BALB/
c mice (The Jackson Lab, #000651), Flt3ITD and Flt3ITD;Tet2+/− transgenic BALB/
c mice33 (a kind gift from Evan Lind’s lab, Oregon Health & Science University,
Portland, OR). All mouse work was performed with approval from the Oregon
Health & Science University Institutional Animal Care and Use Committee. For
the BM transduction experiment, BM lineage-negative cells were enriched using
Lineage Cell Depletion Kit (#130–090–858, Miltenyi Biotec), cultured overnight in
medium containing IL-3, IL-6, and stem cell factor, and infected with retrovirus
expressing FLT3 or IDH1 WT and mutants. Cytokines are purchased from
PepreTech. A total of 2000 lineage-negative cells per well were seeded into 6-well
plate with 1.1 mL of Methocult M3534 methylcellulose medium (StemCell Tech-
nologies) for 10 days. Images were taken and colonies (>50 cells) were counted via
STEMvision™ colony counting software (StemCell Technologies). Colony cells were
harvested, stained with cell surface markers and analyzed by FACS.

FACS. Cells were stained with antibodies (Biolegend) for 20 min at room tem-
perature and washed twice with PBS. Membrane expression of CD11b, Sca1, c-KIT,
Ter119 and CD71 were analyzed by FACS. All antibodies were used at 1:1000
dilution.
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Inhibitor assay. Transformed Ba/F3 cells were seeded in 384-well plates (1250 cells
per well) and exposed to increasing concentrations of crenolanib, trametinib or two-
drug combination for 72 h. Cell viability was measured using a methanethiosulfo-
nate (MTS)-based assay (CellTiter96 Aqueous One Solution; Promega), and read at
490 nm after 1–3 h using a BioTek Synergy 2 plate reader (BioTek). Cell viability
was determined by comparing the absorbance of drug-treated cells to that of
untreated controls (four replicates for each condition) set at 100%. The IC50 values
were calculated by a regression curve fit analysis using GraphPad Prism software.

Evaluation of combinatorial effect of combination drugs. We used Excess over
Bliss (EOB) independence model64 to quantify the synergy for crenolanib/trame-
tinib combination at each drug concentration. EOB evaluates if the combined effect
of two compounds is significantly greater or smaller than the combination of their
individual (independent) effects and is measured by calculating the difference
between the observed and predicted inhibition of the drug combination. For two
single compounds with inhibition effects A and B, the predicted inhibition for the
drug combination is calculated as C=A+ B−A × B. The two-agent combination
inhibition is defined as AB. EOB can be calculated by Z=AB− C. Z Plus score
(>0) indicates a synergistic effect, and Z minus score (<0) indicates an antagonistic
effect. We define EOB Z-score ≥0.2 as strongly synergistic and ≤−0.2 as strongly
antagonistic. The predicted combination viability of drug A and B combination is
defined as (A+ B−A × B) %. Highest single-agent (HSA) model64 was also used
to evaluate if the combined effect of two drugs compounds is significantly greater
or smaller than the higher individual drug effect.

CRISPR targeting TP53. A set of two single-guide RNA (sgRNAs) targeting TP53
(sgRNA1 targeting TP53 (TP53_1): 5’-GAGCGCTGCTCAGATAGCGA-3’;
sgRNA2 targeting TP53 (TP53_2): 5’-CCCCGGACGATATTGAACAA -3’) as well
as non-specific targeting control (NS: 5’-GGAGATATCAATCCTCCCGC-3’)’ were
subcloned into plentiCRISPR v2 (a gift from Feng Zhang (Addgene plasmid #
52961)65) according to the investigator’s provided instructions. Lentiviruses were
produced in HEK293T/17 cells using lentiCRISPR v2 coding for the respective
sgRNA, Cas9 and puromycin resistance genes, and packaging plasmids psPAX2
and pLP/VSVG. Media containing viruses were spinoculated into Molm13 cells for
2 h at 35 °C, 2400 × g. Transduced cells were selected for puromycin resistance for
5 days and analyzed for the presence of genomic deletions using EndoT7 assay
(not shown) and western blot analyses for TP53 protein (Cell Signaling, #2524,
used at 1:1000 dilution) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH;
Thermo Fisher, #AM4300, used at 1:5000 dilution) loading control.

Statistical analysis. Statistical analyses were performed on GraphPad Prism
software. The data were expressed as the mean ± SEM. Statistical significance was
determined using two-tailed nonparametric Student’s t-tests (Mann–Whitney test)
or one-way analysis of variance (ANOVA) and expressed as p values (*p < 0.05,
**p < 0.01, ***p < 0.001 and ****p < 0.0001).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All sequence data have been deposited at dbGaP and Genomic Data Commons.
The study ID is 29125 and the accession number is phs001628. In addition, all data
can be accessed and queried through our online, interactive user interface, Vizome,
at www.vizome.org.
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