190 research outputs found

    Linux kernel compaction through cold code swapping

    Get PDF
    There is a growing trend to use general-purpose operating systems like Linux in embedded systems. Previous research focused on using compaction and specialization techniques to adapt a general-purpose OS to the memory-constrained environment, presented by most, embedded systems. However, there is still room for improvement: it has been shown that even after application of the aforementioned techniques more than 50% of the kernel code remains unexecuted under normal system operation. We introduce a new technique that reduces the Linux kernel code memory footprint, through on-demand code loading of infrequently executed code, for systems that support virtual memory. In this paper, we describe our general approach, and we study code placement algorithms to minimize the performance impact of the code loading. A code, size reduction of 68% is achieved, with a 2.2% execution speedup of the system-mode execution time, for a case study based on the MediaBench II benchmark suite

    Worsening cognitive impairment and neurodegenerative pathology progressively increase risk for delirium

    Get PDF
    Background: Delirium is a profound neuropsychiatric disturbance precipitated by acute illness. Although dementia is the major risk factor this has typically been considered a binary quantity (i.e., cognitively impaired versus cognitively normal) with respect to delirium risk. We used humans and mice to address the hypothesis that the severity of underlying neurodegenerative changes and/or cognitive impairment progressively alters delirium risk. Methods: Humans in a population-based longitudinal study, Vantaa 85+, were followed for incident delirium. Odds for reporting delirium at follow-up (outcome) were modeled using random-effects logistic regression, where prior cognitive impairment measured by Mini-Mental State Exam (MMSE) (exposure) was considered. To address whether underlying neurodegenerative pathology increased susceptibility to acute cognitive change, mice at three stages of neurodegenerative disease progression (ME7 model of neurodegeneration: controls, 12 weeks, and 16 weeks) were assessed for acute cognitive dysfunction upon systemic inflammation induced by bacterial lipopolysaccharide (LPS; 100 μg/kg). Synaptic and axonal correlates of susceptibility to acute dysfunction were assessed using immunohistochemistry. Results: In the Vantaa cohort, 465 persons (88.4 ± 2.8 years) completed MMSE at baseline. For every MMSE point lost, risk of incident delirium increased by 5% (p = 0.02). LPS precipitated severe and fluctuating cognitive deficits in 16-week ME7 mice but lower incidence or no deficits in 12-week ME7 and controls, respectively. This was associated with progressive thalamic synaptic loss and axonal pathology. Conclusions: A human population-based cohort with graded severity of existing cognitive impairment and a mouse model with progressing neurodegeneration both indicate that the risk of delirium increases with greater severity of pre-existing cognitive impairment and neuropathology

    A coordination model for interactive components

    Get PDF
    Although presented with a variety of ‘flavours’, the notion of an interactor, as an abstract characterisation of an interactive com- ponent, is well-known in the area of formal modelling techniques for interactive systems. This paper replaces traditional, hierarchical, ‘tree-like’ composition of interactors in the specification of complex interactive sys- tems, by their exogenous coordination through general-purpose software connectors which assure the flow of data and the meet of synchronisation constraints. The paper’s technical contribution is twofold. First a modal logic is defined to express behavioural properties of both interactors and connectors. The logic is new in the sense that its modalities are indexed by fragments of sets of actions to cater for action co-occurrence. Then, this logic is used in the specification of both interactors and coordination layers which orchestrate their interconnection

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Measurement of the Branching Fraction for B->eta' K and Search for B->eta'pi+

    Full text link
    We report measurements for two-body charmless B decays with an eta' meson in the final state. Using 11.1X10^6 BBbar pairs collected with the Belle detector, we find BF(B^+ ->eta'K^+)=(79^+12_-11 +-9)x10^-6 and BF(B^0 -> eta'K^0)=(55^+19_-16 +-8)x10^-6, where the first and second errors are statistical and systematic, respectively. No signal is observed in the mode B^+ -> eta' pi^+, and we set a 90% confidence level upper limit of BF(B^+-> eta'pi^+) eta'K^+- decays is investigated and a limit at 90% confidence level of -0.20<Acp<0.32 is obtained.Comment: Submitted to Physics Letters

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Measurement of charged particle multiplicities in pppp collisions at s=7{\sqrt{s} =7}TeV in the forward region

    Get PDF
    The charged particle production in proton-proton collisions is studied with the LHCb detector at a centre-of-mass energy of s=7{\sqrt{s} =7}TeV in different intervals of pseudorapidity η\eta. The charged particles are reconstructed close to the interaction region in the vertex detector, which provides high reconstruction efficiency in the η\eta ranges 2.5<η<2.0-2.5<\eta<-2.0 and 2.0<η<4.52.0<\eta<4.5. The data were taken with a minimum bias trigger, only requiring one or more reconstructed tracks in the vertex detector. By selecting an event sample with at least one track with a transverse momentum greater than 1 GeV/c a hard QCD subsample is investigated. Several event generators are compared with the data; none are able to describe fully the multiplicity distributions or the charged particle density distribution as a function of η\eta. In general, the models underestimate the charged particle production

    Measurement of prompt hadron production ratios in pppp collisions at s=\sqrt{s} = 0.9 and 7 TeV

    Get PDF
    The charged-particle production ratios pˉ/p\bar{p}/p, K/K+K^-/K^+, π/π+\pi^-/\pi^+, (p+pˉ)/(π++π)(p + \bar{p})/(\pi^+ + \pi^-), (K++K)/(π++π)(K^+ + K^-)/(\pi^+ + \pi^-) and (p+pˉ)/(K++K)(p + \bar{p})/(K^+ + K^-) are measured with the LHCb detector using 0.3nb10.3 {\rm nb^{-1}} of pppp collisions delivered by the LHC at s=0.9\sqrt{s} = 0.9 TeV and 1.8nb11.8 {\rm nb^{-1}} at s=7\sqrt{s} = 7 TeV. The measurements are performed as a function of transverse momentum pTp_{\rm T} and pseudorapidity η\eta. The production ratios are compared to the predictions of several Monte Carlo generator settings, none of which are able to describe adequately all observables. The ratio pˉ/p\bar{p}/p is also considered as a function of rapidity loss, Δyybeamy\Delta y \equiv y_{\rm beam} - y, and is used to constrain models of baryon transport.Comment: Incorrect entries in Table 2 corrected. No consequences for rest of pape

    Measurement of relative branching fractions of B decays to ψ(2S)\psi(2S) and J/ψJ/\psi mesons

    Get PDF
    The relative rates of B-meson decays into J/ψJ/\psi and ψ(2S)\psi(2S) mesons are measured for the three decay modes in pp collisions recorded with the LHCb detector. The ratios of branching fractions (B\mathcal{B}) are measured to be B(B+ψ(2S)K+)B(B+J/ψK+)=0.594±0.006(stat)±0.016(syst)±0.015(Rψ)\frac{\mathcal{B}(B^+ \to \psi(2S) K^+)}{\mathcal{B}(B^+ \to J/\psi K^+)} = 0.594 \pm 0.006 (stat) \pm 0.016 (syst) \pm 0.015 (R_{\psi}), B(B0ψ(2S)K0)B(B0J/ψK0)=0.476±0.014(stat)±0.010(syst)±0.012(Rψ)\frac{\mathcal{B}(B^0 \to \psi(2S) K^{*0})}{\mathcal{B}(B^0 \to J/\psi K^{*0})} = 0.476 \pm 0.014 (stat) \pm 0.010 (syst) \pm 0.012\,(R_{\psi}), Bs0(Bs0ψ(2S)ϕ)B(Bs0J/ψϕ)=0.489±0.026(stat)±0.021(syst)±0.012(Rψ)\frac{\mathcal{B}^{0}_{s}(B^0_s \to \psi(2S)\phi)}{\mathcal{B}(B^0_s \to J/\psi\phi)} = 0.489 \pm 0.026 (stat) \pm 0.021 (syst) \pm 0.012\,(R_{\psi}) where the third uncertainty is from the ratio of the ψ(2S)\psi(2S) and J/ψJ/\psi branching fractions to μμ\mu\mu.Comment: 14 pages, 1 figur

    Observation of X(3872) production in pp collisions at √s=7TeV

    Get PDF
    Using 34.7 pb−1 of data collected with the LHCb detector, the inclusive production of the X(3872) meson in pp collisions at √s = 7 TeV is observed for the first time. Candidates are selected in the X(3872)→J/ψπ+π− decay mode, and used to measure σ(pp→X(3872)+anything)B(X(3872)→J/ψπ+π−) = 5.4 ±1.3 (stat)±0.8 (syst) nb, where σ(pp →X(3872) + anything) is the inclusive production cross section of X(3872) mesons with rapidity in the range 2.5–4.5 and transverse momentum in the range 5–20 GeV/c. In addition the masses of both the X(3872) and ψ(2S) mesons, reconstructed in the J/ψπ+π− final state, are measured to be mX(3872) = 3871.95± 0.48 (stat)±0.12 (syst) MeV/c2 and mψ(2S) = 3686.12±0.06 (stat) ±0.10 (syst) MeV/c2
    corecore