69 research outputs found
Carnival Speech: Making the Jump
If one day you decide to forsake conventional life and run away with a carnival, one of the first things you\u27ll notice is that you don\u27t understand a lot of what is being said. Often persons just hired to a carnival crew aren\u27t even called by name until they have made the jump, or traveled to a new location, at least once. In a subculture with such transient population, newcomers are mere first o\u27May, wing nuts or often simply green help
Analysis of Courts\u27 Discretion to Enforce Arbitration of Core Claims
(Excerpt)
In general, a bankruptcy court has original and exclusive jurisdiction of chapter 11 bankruptcy cases. However, problems arise when a prepetition contract contains an arbitration clause, and a court must decide if it has discretion to enforce arbitration of a core claim. The statutes that play essential (but competing) roles in a court\u27s analysis are the Federal Arbitration Act ( FAA ) and the United States Bankruptcy Code (the Bankruptcy Code ). In sum, bankruptcy policy exerts an inexorable pull towards centralization while arbitration policy advocates a decentralized approach toward dispute resolution.
In these cases, a bankruptcy court must determine if there are core claims and if it has discretion to enforce arbitration of such claims. Core claims stem[] from the bankruptcy itself or would necessarily be resolved in the claims allowance process; thus, courts have a stronger interest in refusing to enforce arbitration. However, without any clear guidance from case law or the Bankruptcy Code, courts have split as to whether they have discretion to enforce arbitration of core claims.
This memorandum discusses the applicable considerations in determining whether a core claim must be arbitrated if a prepetition contract contains an arbitration clause. Part I discusses the underlying tension between the FAA and the Bankruptcy Code. Part II explains the key distinctions between core and noncore claims. Part III analyzes the split among bankruptcy courts regarding the discretion a court has (or does not have) to enforce arbitration of a core claim
Recommended from our members
Genome-wide association study identifies 30 loci associated with bipolar disorder.
Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study (GWAS) including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P < 1 × 10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (P < 5 × 10-8) in the discovery GWAS were not genome-wide significant in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis, 30 loci were genome-wide significant, including 20 newly identified loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene sets, including regulation of insulin secretion and endocannabinoid signaling. Bipolar I disorder is strongly genetically correlated with schizophrenia, driven by psychosis, whereas bipolar II disorder is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential biological mechanisms for bipolar disorder
Lateral frontal cortex volume reduction in Tourette syndrome revealed by VBM
<p>Abstract</p> <p>Background</p> <p>Structural changes have been found predominantly in the frontal cortex and in the striatum in children and adolescents with Gilles de la Tourette syndrome (GTS). The influence of comorbid symptomatology is unclear. Here we sought to address the question of gray matter abnormalities in GTS patients <it>with </it>co-morbid obsessive-compulsive disorder (OCD) and/or attention deficit hyperactivity disorder (ADHD) using voxel-based morphometry (VBM) in twenty-nine adult actually unmedicated GTS patients and twenty-five healthy control subjects.</p> <p>Results</p> <p>In GTS we detected a cluster of decreased gray matter volume in the left inferior frontal gyrus (IFG), but no regions demonstrating volume increases. By comparing subgroups of GTS with comorbid ADHD to the subgroup with comorbid OCD, we found a left-sided amygdalar volume increase.</p> <p>Conclusions</p> <p>From our results it is suggested that the left IFG may constitute a common underlying structural correlate of GTS with co-morbid OCD/ADHD. A volume reduction in this brain region that has been previously identified as a key region in OCD and was associated with the active inhibition of attentional processes may reflect the failure to control behavior. Amygdala volume increase is discussed on the background of a linkage of this structure with ADHD symptomatology. Correlations with clinical data revealed gray matter volume changes in specific brain areas that have been described in these conditions each.</p
Improving Genetic Prediction by Leveraging Genetic Correlations Among Human Diseases and Traits
Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7 for height to 47 for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait. © 2018 The Author(s)
Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders
Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
Gene set enrichment analysis and expression pattern exploration implicate an involvement of neurodevelopmental processes in bipolar disorder
Bipolar disorder (BD) is a common and highly heritable disorder of mood. Genome-wide association studies (GWAS) have identified several independent susceptibility loci. In order to extract more biological information from GWAS data, multi-locus approaches represent powerful tools since they utilize knowledge about biological processes to integrate functional sets of genes at strongly to moderately associated loci.We conducted gene set enrichment analyses (GSEA) using 2.3 million single-nucleotide polymorphisms, 397 Reactome pathways and 24,025 patients with BD and controls. RNA expression of implicated individual genes and gene sets were examined in post-mortem brains across lifespan.Two pathways showed a significant enrichment after correction for multiple comparisons in the GSEA: GRB2 events in ERBB2 signaling, for which 6 of 21 genes were BD associated (PFDR = 0.0377), and NCAM signaling for neurite out-growth, for which 11 out of 62 genes were BD associated (PFDR = 0.0451). Most pathway genes showed peaks of RNA co-expression during fetal development and infancy and mapped to neocortical areas and parts of the limbic system.Pathway associations were technically reproduced by two methods, although they were not formally replicated in independent samples. Gene expression was explored in controls but not in patients.Pathway analysis in large GWAS data of BD and follow-up of gene expression patterns in healthy brains provide support for an involvement of neurodevelopmental processes in the etiology of this neuropsychiatric disease. Future studies are required to further evaluate the relevance of the implicated genes on pathway functioning and clinical aspects of BD
Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes
Schizophrenia and bipolar disorder are two distinct diagnoses that share symptomology. Understanding the genetic factors contributing to the shared and disorder-specific symptoms will be crucial for improving diagnosis and treatment. In genetic data consisting of 53,555 cases (20,129 bipolar disorder [BD], 33,426 schizophrenia [SCZ]) and 54,065 controls, we identified 114 genome-wide significant loci implicating synaptic and neuronal pathways shared between disorders. Comparing SCZ to BD (23,585 SCZ, 15,270 BD) identified four genomic regions including one with disorder-independent causal variants and potassium ion response genes as contributing to differences in biology between the disorders. Polygenic risk score (PRS) analyses identified several significant correlations within case-only phenotypes including SCZ PRS with psychotic features and age of onset in BD. For the first time, we discover specific loci that distinguish between BD and SCZ and identify polygenic components underlying multiple symptom dimensions. These results point to the utility of genetics to inform symptomology and potential treatment
- …