32 research outputs found

    Oral History of Shelby McNutt

    Get PDF
    Written interview with Shelby McNutt, recipient of the 1994 National Forensics League Distinguished Service Award.https://scholars.fhsu.edu/ors/1268/thumbnail.jp

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    Dysregulation of PRMT5 in chronic lymphocytic leukemia promotes progression with high risk of Richter's transformation

    Get PDF
    : Richter's Transformation (RT) is a poorly understood and fatal progression of chronic lymphocytic leukemia (CLL) manifesting histologically as diffuse large B-cell lymphoma. Protein arginine methyltransferase 5 (PRMT5) is implicated in lymphomagenesis, but its role in CLL or RT progression is unknown. We demonstrate herein that tumors uniformly overexpress PRMT5 in patients with progression to RT. Furthermore, mice with B-specific overexpression of hPRMT5 develop a B-lymphoid expansion with increased risk of death, and Eµ-PRMT5/TCL1 double transgenic mice develop a highly aggressive disease with transformation that histologically resembles RT; where large-scale transcriptional profiling identifies oncogenic pathways mediating PRMT5-driven disease progression. Lastly, we report the development of a SAM-competitive PRMT5 inhibitor, PRT382, with exclusive selectivity and optimal in vitro and in vivo activity compared to available PRMT5 inhibitors. Taken together, the discovery that PRMT5 drives oncogenic pathways promoting RT provides a compelling rationale for clinical investigation of PRMT5 inhibitors such as PRT382 in aggressive CLL/RT cases

    Indicators of "Healthy Aging" in older women (65-69 years of age). A data-mining approach based on prediction of long-term survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of long-term survival in healthy adults requires recognition of features that serve as early indicators of successful aging. The aims of this study were to identify predictors of long-term survival in older women and to develop a multivariable model based upon longitudinal data from the Study of Osteoporotic Fractures (SOF).</p> <p>Methods</p> <p>We considered only the youngest subjects (<it>n </it>= 4,097) enrolled in the SOF cohort (65 to 69 years of age) and excluded older SOF subjects more likely to exhibit a "frail" phenotype. A total of 377 phenotypic measures were screened to determine which were of most value for prediction of long-term (19-year) survival. Prognostic capacity of individual predictors, and combinations of predictors, was evaluated using a cross-validation criterion with prediction accuracy assessed according to time-specific AUC statistics.</p> <p>Results</p> <p>Visual contrast sensitivity score was among the top 5 individual predictors relative to all 377 variables evaluated (mean AUC = 0.570). A 13-variable model with strong predictive performance was generated using a forward search strategy (mean AUC = 0.673). Variables within this model included a measure of physical function, smoking and diabetes status, self-reported health, contrast sensitivity, and functional status indices reflecting cumulative number of daily living impairments (HR ≥ 0.879 or RH ≤ 1.131; P < 0.001). We evaluated this model and show that it predicts long-term survival among subjects assigned differing causes of death (e.g., cancer, cardiovascular disease; P < 0.01). For an average follow-up time of 20 years, output from the model was associated with multiple outcomes among survivors, such as tests of cognitive function, geriatric depression, number of daily living impairments and grip strength (P < 0.03).</p> <p>Conclusions</p> <p>The multivariate model we developed characterizes a "healthy aging" phenotype based upon an integration of measures that together reflect multiple dimensions of an aging adult (65-69 years of age). Age-sensitive components of this model may be of value as biomarkers in human studies that evaluate anti-aging interventions. Our methodology could be applied to data from other longitudinal cohorts to generalize these findings, identify additional predictors of long-term survival, and to further develop the "healthy aging" concept.</p

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Honey Bee Location- and Time-Linked Memory Use in Novel Foraging Situations: Floral Color Dependency

    No full text
    Learning facilitates behavioral plasticity, leading to higher success rates when foraging. However, memory is of decreasing value with changes brought about by moving to novel resource locations or activity at different times of the day. These premises suggest a foraging model with location- and time-linked memory. Thus, each problem is novel, and selection should favor a maximum likelihood approach to achieve energy maximization results. Alternatively, information is potentially always applicable. This premise suggests a different foraging model, one where initial decisions should be based on previous learning regardless of the foraging site or time. Under this second model, no problem is considered novel, and selection should favor a Bayesian or pseudo-Bayesian approach to achieve energy maximization results. We tested these two models by offering honey bees a learning situation at one location in the morning, where nectar rewards differed between flower colors, and examined their behavior at a second location in the afternoon where rewards did not differ between flower colors. Both blue-yellow and blue-white dimorphic flower patches were used. Information learned in the morning was clearly used in the afternoon at a new foraging site. Memory was not location-time restricted in terms of use when visiting either flower color dimorphism

    Honeybee (Apis mellifera ligustica) use of color and pattern in making foraging choices

    No full text
    Honeybees can use various kinds of information, including color and pattern, in choosing flowers during foraging. We offered free-flying bees a dimorphic artificial patch of radial and bilateral blue/white flowers in order to examine three hypotheses to explain the noted increase in visitation to the flower type offering a lower caloric reward, i.e., optical resolution, dyslectic interpretation, and cognition related to pattern colors. When bees were offered a color pattern rather than a simple color difference to differentiate flower types, they did not always make choices predicted by theory. Honeybees foraged randomly on both flower morphs when rewards were equal and chose the higher caloric reward more often when rewards were different. However, they visited the less rewarding choice more than 33% of the time. Increasing the size of the flower surface by doubling the dimensions did not decrease visitation to the less rewarding flower type, suggesting that visual acuity is not the limiting factor in flower sizes used. When flower colors that increased contrast (yellow vs, blue) were used in the dimorphic parch, visitation rate to the less rewarding flower type did not decline, nor did this 'error rate' decrease when identical patterns were used with only partial color differences. Adding an orientation reference on each flower decreased the frequency with which the less rewarding flower type was chosen from 36 to 26%, possibly because foragers were induced to switch from a global cue (e.g., patch) to a local cue (e.g.. flower). The rate with which the less rewarding flower type is chosen appears to be a function of honeybee use of cognitive and sensory modalities, rather than limited memory and correlative abilities

    Geochemical processes controlling arsenic mobility in groundwater: A case study of arsenic mobilization and natural attenuation

    No full text
    The behavior of As in the subsurface environment was examined along a transect of groundwater monitoring wells at a Superfund site, where enhanced reductive dechlorination (ERD) is being used for the remediation of groundwater contaminated with chlorinated solvents. The transect was installed parallel to the groundwater flow direction through the treatment area. The ERD technology involves the injection of organic C (OC) to stimulate in situ microbial dechlorination processes. A secondary effect of the ERD treatment at this site, however, is the mobilization of As, as well as Fe and Mn. The concentrations of these elements are low in groundwater collected upgradient of the ERD treatment area, indicating that, in the absence of the injected OC, the As that occurs naturally in the sediment is relatively immobile. Batch experiments conducted using sediments from the site inoculated with an Fe(III)- and As(V)-reducing bacterium and amended with lactate resulted in mobilization of As, Fe and Mn, suggesting that As mobilization in the field is due to microbial processes. In the areas of the transect downgradient of the ERD treatment area, however, the concentrations of OC, As, Fe and Mn in the groundwater are not elevated relative to background levels. The decrease in the dissolved concentration of OC can be attributed to mineralization by microorganisms. The losses of As, Fe and Mn from the dissolved phase must presumably be accompanied by their uptake onto aquifer solids, but chemical extractions provided evidence only for the enrichment of Fe(II). Nor could sorption of As(III) onto sediments be detected by X-ray absorption spectroscopy (XAS) against the background of native As in the sediments, which was present as As(V)
    corecore