43 research outputs found

    Anaphylactic response to topical fluorescein 2% eye drops: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The intravenous use of fluorescein 10% during retinal angiography can cause severe systemic reactions including, on rare occasions, anaphylaxis. Fluorescein 2% eye drops are used extensively for clinical examination and diagnosis, but to the best of our knowledge, they have only been reported as being responsible for a systemic anaphylactic response on two previous occasions.</p> <p>Case presentation</p> <p>We report the case of a 51-year-old woman who developed an anaphylactic reaction when she was administered fluorescein sodium 2% eye drops after cataract surgery. This was the second time she had been exposed to fluorescein. She had brittle asthma and a history of anaphylaxis following exposure to a variety of drug and food allergens. She was successfully resuscitated and recovered completely over a period of two days.</p> <p>Conclusions</p> <p>Fluorescein 2% drops are universally used in general practice, ophthalmology, optometry, and casualty departments. Our case report reveals the potential for this benign eye drop to cause a life-threatening systemic reaction and emphasises the importance of considering this consequence when administering topical fluorescein 2% to a patient with a history of anaphylaxis to other allergens.</p

    Comparative phylogeography of red maple (Acer rubrum L.) and silver maple (Acer saccharinum L.): impacts of habitat specialization, hybridization and glacial history

    Full text link
    Aim We analysed variation in chloroplast DNA (cpDNA) in red maple (Acer rubrum L.) and silver maple (Acer saccharinum L.) across a large part of their geographic ranges. Acer rubrum is one of the most common and morphologically variable deciduous trees of eastern North America, while its sister species A. saccharinum has a more restricted habitat distribution and displays markedly less morphological variation. Our objective was to infer the impact of biogeographic history on cpDNA diversity and phylogeographic structure in both species. Location Deciduous forests of eastern North America. Methods We sequenced 1289 to 1645 bp of non-coding cpDNA from A. rubrum (n = 258) and A. saccharinum (n = 83). Maximum parsimony networks and spatial analysis of molecular variance (SAMOVA) were used to analyse phylogeographic structure. Rarefaction analyses were used to compare genetic diversity. Results A total of 40 cpDNA haplotypes were recovered from A. rubrum (38 haplotypes) and A. saccharinum (7 haplotypes). Five of the seven A. saccharinum haplotypes were shared with nearby samples of A. rubrum. SAMOVA recovered four phylogeographic groups for A. rubrum in: (1) south-eastern USA, (2) the Gulf and south-eastern Coastal Plain, (3) the lower Mississippi River Valley, and (4) the central and northern regions of eastern North America. Acer saccharinum had significantly lower haplotype diversity than A. rubrum, and novel haplotypes in post-glaciated northern limits of its range were shared with A. rubrum. Main conclusions This is the first study of A. rubrum to report a distinct phylogeographic group centred on the lower Mississippi River, and the first to examine data comparatively with A. saccharinum. We hypothesized that A. rubrum would display stronger phylogeographic structure and greater haplotype diversity than A. saccharinum because of its greater geographic range, and ecological and morphological variation. This hypothesis was supported by the cpDNA analysis. The sharing of cpDNA and chloroplast simple sequence repeat (cpSSR) haplotypes in areas of geographic overlap provides evidence of introgression, which led to an increase in haplotype diversity in both species, and to novel phylogeographic structure in A. rubrum. We recommend that introgression be considered, along with other potential causes, as an explanation for the phylogeographic structure of cpDNA in plants.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83505/1/Saeki2011maple.pdf8

    The LifeCycle Project-EU Child Cohort Network: a federated analysis infrastructure and harmonized data of more than 250,000 children and parents

    Get PDF

    The LifeCycle Project-EU Child Cohort Network : a federated analysis infrastructure and harmonized data of more than 250,000 children and parents

    Get PDF
    Early life is an important window of opportunity to improve health across the full lifecycle. An accumulating body of evidence suggests that exposure to adverse stressors during early life leads to developmental adaptations, which subsequently affect disease risk in later life. Also, geographical, socio-economic, and ethnic differences are related to health inequalities from early life onwards. To address these important public health challenges, many European pregnancy and childhood cohorts have been established over the last 30 years. The enormous wealth of data of these cohorts has led to important new biological insights and important impact for health from early life onwards. The impact of these cohorts and their data could be further increased by combining data from different cohorts. Combining data will lead to the possibility of identifying smaller effect estimates, and the opportunity to better identify risk groups and risk factors leading to disease across the lifecycle across countries. Also, it enables research on better causal understanding and modelling of life course health trajectories. The EU Child Cohort Network, established by the Horizon2020-funded LifeCycle Project, brings together nineteen pregnancy and childhood cohorts, together including more than 250,000 children and their parents. A large set of variables has been harmonised and standardized across these cohorts. The harmonized data are kept within each institution and can be accessed by external researchers through a shared federated data analysis platform using the R-based platform DataSHIELD, which takes relevant national and international data regulations into account. The EU Child Cohort Network has an open character. All protocols for data harmonization and setting up the data analysis platform are available online. The EU Child Cohort Network creates great opportunities for researchers to use data from different cohorts, during and beyond the LifeCycle Project duration. It also provides a novel model for collaborative research in large research infrastructures with individual-level data. The LifeCycle Project will translate results from research using the EU Child Cohort Network into recommendations for targeted prevention strategies to improve health trajectories for current and future generations by optimizing their earliest phases of life.Peer reviewe

    Cumulative Millisecond-Long Sampling for a Comprehensive Energetic Evaluation of Aqueous Ionic Liquid Effects on Amino Acid Interactions

    No full text
    The interactions of amino acid side-chains confer diverse energetic contributions and physical properties to a protein’s stability and function. Various computational tools estimate the effect of changing a given amino acid on the protein’s stability based on parametrized (free) energy functions. When parametrized for the prediction of protein stability in water, such energy functions can lead to suboptimal results for other solvents, such as ionic liquids (IL), aqueous ionic liquids (aIL), or salt solutions. However, to our knowledge, no comprehensive data are available describing the energetic effects of aIL on intramolecular protein interactions. Here, we present the most comprehensive set of potential of mean force (PMF) profiles of pairwise protein–residue interactions to date, covering 50 relevant interactions in water, the two biotechnologically relevant aIL [BMIM/Cl] and [BMIM/TfO], and [Na/Cl]. These results are based on a cumulated simulation time of >1 ms. aIL and salt ions can weaken, but also strengthen, specific residue interactions by more than 3 kcal mol–1, depending on the residue pair, residue–residue configuration, participating ions, and concentration, necessitating considering such interactions specifically. These changes originate from a complex interplay of competitive or cooperative noncovalent ion–residue interactions, changes in solvent structural dynamics, or unspecific charge screening effects and occur at the contact distance but also at larger, solvent-separated distances. This data provide explanations at the atomistic and energetic levels for complex IL effects on protein stability and should help improve the prediction accuracies of computational tools that estimate protein stability based on (free) energy functions

    Cumulative Millisecond-Long Sampling for a Comprehensive Energetic Evaluation of Aqueous Ionic Liquid Effects on Amino Acid Interactions

    No full text
    The interactions of amino acid side-chains confer diverse energetic contributions and physical properties to a protein’s stability and function. Various computational tools estimate the effect of changing a given amino acid on the protein’s stability based on parametrized (free) energy functions. When parametrized for the prediction of protein stability in water, such energy functions can lead to suboptimal results for other solvents, such as ionic liquids (IL), aqueous ionic liquids (aIL), or salt solutions. However, to our knowledge, no comprehensive data are available describing the energetic effects of aIL on intramolecular protein interactions. Here, we present the most comprehensive set of potential of mean force (PMF) profiles of pairwise protein–residue interactions to date, covering 50 relevant interactions in water, the two biotechnologically relevant aIL [BMIM/Cl] and [BMIM/TfO], and [Na/Cl]. These results are based on a cumulated simulation time of >1 ms. aIL and salt ions can weaken, but also strengthen, specific residue interactions by more than 3 kcal mol–1, depending on the residue pair, residue–residue configuration, participating ions, and concentration, necessitating considering such interactions specifically. These changes originate from a complex interplay of competitive or cooperative noncovalent ion–residue interactions, changes in solvent structural dynamics, or unspecific charge screening effects and occur at the contact distance but also at larger, solvent-separated distances. This data provide explanations at the atomistic and energetic levels for complex IL effects on protein stability and should help improve the prediction accuracies of computational tools that estimate protein stability based on (free) energy functions

    Cumulative Millisecond-Long Sampling for a Comprehensive Energetic Evaluation of Aqueous Ionic Liquid Effects on Amino Acid Interactions

    No full text
    The interactions of amino acid side-chains confer diverse energetic contributions and physical properties to a protein’s stability and function. Various computational tools estimate the effect of changing a given amino acid on the protein’s stability based on parametrized (free) energy functions. When parametrized for the prediction of protein stability in water, such energy functions can lead to suboptimal results for other solvents, such as ionic liquids (IL), aqueous ionic liquids (aIL), or salt solutions. However, to our knowledge, no comprehensive data are available describing the energetic effects of aIL on intramolecular protein interactions. Here, we present the most comprehensive set of potential of mean force (PMF) profiles of pairwise protein–residue interactions to date, covering 50 relevant interactions in water, the two biotechnologically relevant aIL [BMIM/Cl] and [BMIM/TfO], and [Na/Cl]. These results are based on a cumulated simulation time of >1 ms. aIL and salt ions can weaken, but also strengthen, specific residue interactions by more than 3 kcal mol–1, depending on the residue pair, residue–residue configuration, participating ions, and concentration, necessitating considering such interactions specifically. These changes originate from a complex interplay of competitive or cooperative noncovalent ion–residue interactions, changes in solvent structural dynamics, or unspecific charge screening effects and occur at the contact distance but also at larger, solvent-separated distances. This data provide explanations at the atomistic and energetic levels for complex IL effects on protein stability and should help improve the prediction accuracies of computational tools that estimate protein stability based on (free) energy functions

    Challenges in the management of severe cutaneous mucormycosis: A case of rapid progression in uncontrolled diabetes mellitus with polymicrobial implications

    No full text
    Mucormycosis, a rare but life-threatening fungal infection, poses significant challenges in clinical management, particularly in patients with uncontrolled diabetes mellitus. This case report presents the clinical journey of a 44-year-old woman who developed a rapidly progressing Mucorales infection following a domestic knife injury. Her condition, complicated by diabetic ketoacidosis and co-infection with Candida albicans, led to severe hand phlegm and sepsis. Despite aggressive intervention, the infection continued to advance, ultimately resulting in the patient’s demise
    corecore