243 research outputs found

    An integrated search-based approach for automatic testing from extended finite state machine (EFSM) models

    Get PDF
    This is the post-print version of the Article - Copyright @ 2011 ElsevierThe extended finite state machine (EFSM) is a modelling approach that has been used to represent a wide range of systems. When testing from an EFSM, it is normal to use a test criterion such as transition coverage. Such test criteria are often expressed in terms of transition paths (TPs) through an EFSM. Despite the popularity of EFSMs, testing from an EFSM is difficult for two main reasons: path feasibility and path input sequence generation. The path feasibility problem concerns generating paths that are feasible whereas the path input sequence generation problem is to find an input sequence that can traverse a feasible path. While search-based approaches have been used in test automation, there has been relatively little work that uses them when testing from an EFSM. In this paper, we propose an integrated search-based approach to automate testing from an EFSM. The approach has two phases, the aim of the first phase being to produce a feasible TP (FTP) while the second phase searches for an input sequence to trigger this TP. The first phase uses a Genetic Algorithm whose fitness function is a TP feasibility metric based on dataflow dependence. The second phase uses a Genetic Algorithm whose fitness function is based on a combination of a branch distance function and approach level. Experimental results using five EFSMs found the first phase to be effective in generating FTPs with a success rate of approximately 96.6%. Furthermore, the proposed input sequence generator could trigger all the generated feasible TPs (success rate = 100%). The results derived from the experiment demonstrate that the proposed approach is effective in automating testing from an EFSM

    Beyond foraging: behavioral science and the future of institutional economics

    Get PDF
    Institutions affect economic outcomes, but variation in them cannot be directly linked to environmental factors such as geography, climate, or technological availabilities. Game theoretic approaches, based as they typically are on foraging only assumptions, do not provide an adequate foundation for understanding the intervening role of politics and ideology; nor does the view that culture and institutions are entirely socially constructed. Understanding what institutions are and how they influence behavior requires an approach that is in part biological, focusing on cognitive and behavioral adaptations for social interaction favored in the past by group selection. These adaptations, along with their effects on canalizing social learning, help to explain uniformities in political and social order, and are the bedrock upon which we build cultural and institutional variability

    Flow cytometry analyses of adipose tissue macrophages

    Get PDF
    Within adipose tissue, multiple leukocyte interactions contribute to metabolic homeostasis in health as well as to the pathogenesis of insulin resistance with obesity. Adipose tissue macrophages (ATMs) are the predominant leukocyte population in fat and contribute to obesity-induced inflammation. Characterization of ATMs and other leukocytes in the stromal vascular fraction from fat has benefited from the use of flow cytometry and flow-assisted cell sorting techniques. These methods permit the immunophenotyping, quantification, and purification of these unique cell populations from multiple adipose tissue depots in rodents and humans. Proper isolation, quantification, and characterization of ATM phenotypes are critical for understanding their role in adipose tissue function and obesity-induced metabolic diseases. Here, we present the flow cytometry protocols for phenotyping ATMs in lean and obese mice employed by our laboratory

    The Morphology of the Expanding Ejecta of V2491 Cygni (2008 N.2)

    Full text link
    Determining the evolution of the ejecta morphology of novae provides valuable information on the shaping mechanisms in operation at early stages of the nova outburst. Understanding such mechanisms has implications for studies of shaping for example in proto-Planetary Nebulae. Here we perform morpho-kinematical studies of V2491 Cyg using spectral data to determine the likely structure of the ejecta and its relationship to the central system and shaping mechanisms. We use Shape to model different morphologies and retrieve their spectra. These synthetic spectra are compared with observed spectra to determine the most likely morphology giving rise to them, including system inclination and expansion velocity of the nova ejecta. We find the best fit remnant morphology to be that of polar blobs and an equatorial ring with an implied inclination of 8012+3^{+3}_{-12} degrees and an maximum expansion velocity of the polar blobs of 3100100+200^{+200}_{-100} km/s and for the equatorial ring 2700100+200^{+200}_{-100} km/s. This inclination would suggest that we should observe eclipses which will enable us to determine more precisely important parameters of the central binary. We also note that the amplitude of the outburst is more akin to the found in recurrent nova systems.Comment: 9 pages, 7 figures, accepted for publication in MNRA

    Parental diabetes status reveals association of mitochondrial DNA haplogroup J1 with type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although mitochondrial dysfunction is consistently manifested in patients with Type 2 Diabetes mellitus (T2DM), the association of mitochondrial DNA (mtDNA) sequence variants with T2DM varies among populations. These differences might stem from differing environmental influences among populations. However, other potentially important considerations emanate from the very nature of mitochondrial genetics, namely the notable high degree of partitioning in the distribution of human mtDNA variants among populations, as well as the interaction of mtDNA and nuclear DNA-encoded factors working in concert to govern mitochondrial function. We hypothesized that association of mtDNA genetic variants with T2DM could be revealed while controlling for the effect of additional inherited factors, reflected in family history information.</p> <p>Methods</p> <p>To test this hypothesis we set out to investigate whether mtDNA genetic variants will be differentially associated with T2DM depending on the diabetes status of the parents. To this end, association of mtDNA genetic backgrounds (haplogroups) with T2DM was assessed in 1055 Jewish patients with and without T2DM parents ('DP' and 'HP', respectively).</p> <p>Results</p> <p>Haplogroup J1 was found to be 2.4 fold under-represented in the 'HP' patients (p = 0.0035). These results are consistent with a previous observation made in Finnish T2DM patients. Moreover, assessing the haplogroup distribution in 'DP' versus 'HP' patients having diabetic siblings revealed that haplogroup J1 was virtually absent in the 'HP' group.</p> <p>Conclusion</p> <p>These results imply the involvement of inherited factors, which modulate the susceptibility of haplogroup J1 to T2DM.</p
    corecore