614 research outputs found

    First Observation of 15Be

    Get PDF
    The neutron-unbound nucleus 15Be was observed for the first time. It was populated using neutron transfer from a deuterated polyethylene target with a 59 MeV/u 14Be beam. Neutrons were measured in coincidence with outgoing 14Be particles and the reconstructed decay energy spectrum exhibits a resonance at 1.8(1) MeV. This corresponds to 15Be being unbound by 0.45 MeV more then 16Be thus significantly hindering the sequential two-neutron decay of 16Be to 14Be through this state

    Further Insights into the Reaction Be14(CH2,X)10He

    Full text link
    A previously published measurement of the reaction of a 59 MeV/nucleon 14Be beam on a deuterated polyethylene target was further analyzed to search for 12He as well as initial state effects in the population of the 10He ground state. No evidence for either was found. A lower limit of about 1 MeV was determined for a possible resonance in 12He. In addition, the three-body decay energy spectrum of 10He could not be described by a reaction mechanism calculation based on the halo structure of the initial 14Be assuming a direct α-particle removal reaction

    Evidence for Black Hole Growth in Local Analogs to Lyman Break Galaxies

    Full text link
    We have used XMM-Newton to observe six Lyman Break Analogs (LBAs): members of the rare population of local galaxies that have properties that are very similar to distant Lyman Break Galaxies. Our six targets were specifically selected because they have optical emission-line properties that are intermediate between starbursts and Type 2 (obscured) AGN. Our new X-ray data provide an important diagnostic of the presence of an AGN. We find X-ray luminosities of order 10^{42} erg/s and ratios of X-ray to far-IR luminosities that are higher than values in pure starburst galaxies by factors ranging from ~ 3 to 30. This strongly suggests the presence of an AGN in at least some of the galaxies. The ratios of the luminosities of the hard (2-10 keV) X-ray to [O III]\lambda 5007 emission-line are low by about an order-of-magnitude compared to Type 1 AGN, but are consistent with the broad range seen in Type 2 AGN. Either the AGN hard X-rays are significantly obscured or the [O III] emission is dominated by the starburst. We searched for an iron emission line at ~ 6.4 keV, which is a key feature of obscured AGN, but only detected emission at the ~ 2\sigma level. Finally, we find that the ratios of the mid-infrared (24\mu m) continuum to [O III]\lambda 5007 luminosities in these LBAs are higher than the values for Type 2 AGN by an average of 0.8 dex. Combining all these clues, we conclude that an AGN is likely to be present, but that the bolometric luminosity is produced primarily by an intense starburst. If these black holes are radiating at the Eddington limit, their masses would lie in the range of 10^5 to 10^6 M_{sun}. These objects may offer ideal local laboratories to investigate the processes by which black holes grew in the early universe.Comment: Accepted for publication in Ap

    Structure and Decay Correlations of Two-Neutron Systems Beyond the Dripline

    Full text link
    The two-neutron unbound systems of 16Be, 13Li, 10He, and 26O have been measured using the Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet setup. The correlations of the 3-body decay for the 16Be and 13Li were extracted and demonstrated a strong correlated enhancement between the two neutrons. The measurement of the 10He ground state resonance from a 14Be(−2p2n) reaction provided insight into previous predictions that wavefunction of the entrance channel, projectile, can influence the observed decay energy spectrum for the unbound system. Lastly, the decay-in-target (DiT) technique was utilized to extract the lifetime of the 26O ground state. The measured lifetime of 4.5+1.1 −1.5 (stat.)±3(sys.) ps provides the first indication of two-neutron radioactivity

    The low frequency of dual AGNs versus the high merger rate of galaxies: A phenomenological model

    Full text link
    Dual AGNs are natural byproducts of hierarchical mergers of galaxies in the LambdaCDM cosmogony. Recent observations have shown that only a small fraction (~ 0.1%-1%) of AGNs at redshift z<~ 0.3 are dual with kpc-scale separations, which is rather low compared to the high merger rate of galaxies. Here we construct a phenomenological model to estimate the number density of dual AGNs and its evolution according to the observationally-estimated major merger rates of galaxies and various scaling relations on the properties of galaxies and their central massive black holes. We show that our model reproduces the observed frequency and separation distribution of dual AGNs provided that significant nuclear activities are triggered only in gas-rich progenitor galaxies with central massive black holes and only when the nuclei of these galaxies are roughly within the half-light radii of their companion galaxies. Under these constraints, the observed low dual AGN frequency is consistent with the relatively high merger rate of galaxies and supports the hypothesis that major mergers lead to AGN/QSO activities. We also predict that the number of kpc-scale dual AGNs decreases with increasing redshift and only about 0.02%--0.06% of AGNs are dual AGNs with double-peaked narrow line features at redshifts of z 0.5-1.2. Future observations of high-redshift dual AGNs would provide a solid test for this prediction.Comment: 8 pages, 3 figure

    First Observation of Be-15

    Get PDF
    The neutron-unbound nucleus Be-15 was observed for the first time. It was populated using neutron transfer from a deuterated polyethylene target with a 59 MeV/u Be-14 beam. Neutrons were measured in coincidence with outgoing Be-14 particles and the reconstructed decay energy spectrum exhibits a resonance at 1.8(1) MeV. This corresponds to Be-15 being unbound by 0.45 MeV more then Be-16 thus significantly hindering the sequential two-neutron decay of Be-16 to Be-14 through this state

    Multiple locus VNTR analysis highlights that geographical clustering and distribution of Dichelobacter nodosus, the causal agent of footrot in sheep, correlates with inter-country movements

    Get PDF
    Dichelobacter nodosus is a Gram-negative, anaerobic bacterium and the causal agent of footrot in sheep. Multiple locus variable number tandem repeat (VNTR) analysis (MLVA) is a portable technique that involves the identification and enumeration of polymorphic tandem repeats across the genome. The aims of this study were to develop an MLVA scheme for D. nodosus suitable for use as a molecular typing tool, and to apply it to a global collection of isolates. Seventy-seven isolates selected from regions with a long history of footrot (GB, Australia) and regions where footrot has recently been reported (India, Scandinavia), were characterised. From an initial 61 potential VNTR regions, four loci were identified as usable and in combination had the attributes required of a typing method for use in bacterial epidemiology: high discriminatory power (D > 0.95), typeability and reproducibility. Results from the analysis indicate that D. nodosus appears to have evolved via recombinational exchanges and clonal diversification. This has resulted in some clonal complexes that contain isolates from multiple countries and continents; and others that contain isolates from a single geographic location (country or region). The distribution of alleles between countries matches historical accounts of sheep movements, suggesting that the MLVA technique is sufficiently specific and sensitive for an epidemiological investigation of the global distribution of D. nodosus

    Unresolved Question of the 10He Ground State Resonance

    Full text link
    The group state of 10He was populated using a 2p2n-removal from a 59 MeV/u 14Be beam. The decay energy of the three body system, 8He + n + n, was measured and a resonance was observed at E = 1.60(25) MeV with a 1.8(4) MeV width. This result is in agreement with previous invariant mass spectroscopy measurements, using the 11Li(-p) reaction, but is consistent with recent transfer reaction results. The proposed explanation that the difference, about 500 keV, is due to the effect of the extended halo nature of 11Li in the one-proton knockout reaction is no longer valid as the present work demonstrates that the discrepancy between the transfer reaction is no longer valid as the present work demonstrates that the discrepancy between the transfer reaction results persists despite using a very different reaction mechanism, 14Be(-2p2n)

    Replication protein A prevents accumulation of single-stranded telomeric DNA in cells that use alternative lengthening of telomeres

    Get PDF
    The activation of a telomere maintenance mechanism is required for cancer development in humans. While most tumors achieve this by expressing the enzyme telomerase, a fraction (5–15%) employs a recombination-based mechanism termed alternative lengthening of telomeres (ALT). Here we show that loss of the single-stranded DNA-binding protein replication protein A (RPA) in human ALT cells, but not in telomerase-positive cells, causes increased exposure of single-stranded G-rich telomeric DNA, cell cycle arrest in G2/M phase, accumulation of single-stranded telomeric DNA within ALT-associated PML bodies (APBs), and formation of telomeric aggregates at the ends of metaphase chromosomes. This study demonstrates differences between ALT cells and telomerase-positive cells in the requirement for RPA in telomere processing and implicates the ALT mechanism in tumor cells as a possible therapeutic target
    corecore