48 research outputs found

    The Role of fimbrial antigens of Dichelobacter nodosus in diagnosis and pathogenesis of footrot

    Get PDF
    Studies presented in this thesis looked at developing new methods for the diagnosis of virulent footrot (VFR) in sheep and identification of serogroups of Dichelobacter nodosus, the principal causative agent of footrot. Earlier studies had shown that immunological memory response in sheep recovered from VFR can be aroused by natural or recurrent infection or by injection of outer membrane protein (OMP) antigens to be used as a retrospective diagnostic test for VFR. But OMP antigen was found to be non-specific in older animals. To overcome this non-specificity of OMP antigen in anamnestic response, pilus antigen was evaluated in a trial at Camden. The results of this trial indicated that antibodies to pilus antigen can be detected over time in a manner similar to OMP antibodies so a retrospective assessment of VFR status can be made by anamnestic test with pilus antigens. The anamnestic response to pilus was similar in character to OMP antigen but unlike OMP was highly specific. The response to anamnestic challenge with pilus was determined by severity of the lesions they had expressed, with severe lesions triggering the greater responses. However, there was variation between individuals, with some (6 of 46 with severe lesions) failing to respond. This individual variation is probably mediated genetically as is response to vaccination. This anamnestic test was tested in flocks of sheep in Nepal that had a history of VFR which had apparently been eradicated. That assessment, based on clinical findings, was confirmed by the uniformly negative results in the pilus anamnestic test applied to a representative sample of the population. This allowed a conclusion that the virulent strains of D. nodosus involved had been eliminated from these flocks. As mentioned in the preceding study pilus antigen was found to be very specific and ideal for retrospective diagnosis of virulent footrot with an anamnestic challenge ELISA test. However, serogroup specificity was seen as a disadvantage of using pilus antigen for the anamnestic test. The possibility of using multivalent pilus antigens was tested in another trial. These animals had been involved in a clinical expression experiment conducted by another research group and had a clinical and bacteriological history extending over more than 12 months. After these initial trials all these animals were treated for footrot and managed for 5 months as a single flock at Camden. These were then challenged with multivalent pilus antigen (serogroup A - I) as a single injection. The results obtained indicate that multivalent pilus anamnestic ELISA is equally effective as monovalent pilus. This has the added advantage that prior knowledge of the serogroups present in the flock is not required. It has the possibility of being used as an indirect test to check the presence of serogroups in a flock without doing the bacterial cultures. This test can identify most animals with pre-existing underrunning lesions (Scores of 3 or higher). However, the sensitivity and specificity of this test need to be tested extensively in flocks of known clinical history before it could be adopted as a routine test. As a key component of a larger study to determine the role of fimbrial genes (fimA and fimB) of D. nodosus in the pathogenesis of footrot using allelic exchange to disrupt these genes of a strain (serogroup G), the study presented in this thesis contributed a detailed characterisation of the resultant mutant and the wild strains and tested these strains for virulence in sheep. The results presented provided the first definitive evidence that the fimA gene is essential for virulence of D.nodosus in sheep. In vivo virulence testing of two fimA mutants showed that they were not able to establish any footrot whereas the wild type of the same strain produced virulent footrot in the same trial conducted under similar conditions. These mutant bacteria were not re-isolated from interdigital skin after in vivo challenge. This indicated that fimA mutant strains could not colonise the ovine foot, and the simplest and most likely explanation for these results was that colonisation of the interdigital skin and subsequent penetration of the stratum corneum requires the adhesive activity of type IV fimbriae. However, since these mutants also had altered ability to secrete extracellular proteases, and perhaps other as yet unknown extracellular proteins, the possibility of the involvement of these factors as major determinants of host colonisation or invasion cannot be excluded. Current methods for the identification of the serogroup of D. nodosus present in the bacterial population requires isolation of the organism and after purification by subculture, antigenic analysis with agglutination tests. This usually takes at least 3 to 4 weeks. With the objective of developing a rapid serogroup specific PCR assay, the basis of serogroup variation in D. nodosus localised in the fimbrial gene region was exploited. A common forward primer and 9 serogroup specific reverse primers were selected from the fimbrial gene sequences of the prototype strains. Analytical sensitivity of the serogroup specific primers on chromosomal DNA was similar to PCR tests in other bacterial species reported before. Immuno-magnetic bead capture PCR method was able to detect 5 to 10 cells in cell lysates. Specificity within and between the serogroups of D. nodosus was tested with all the prototype strains. They were found to be very specific to each serogroup and specific only to D. nodosus when tested with 84 commonly found bacterial strains or strains related to D. nodosus. To overcome the time delay in conducting 9 different amplifications to find out the prevalence of all possible serogroups in a flock multiplex PCR reactions with common forward primer and groups of 3, 4 and 5 reverse primers were successful in reducing the number of reactions to 2 (with groups of 4 and 5) or 3 (with groups of 3) primers. A drawback of the multiplex reaction was that if a template was 1000 times less concentrated that the others in the mixture it was not amplified but the margin for difference is very high. The main aim of developing rapid serogroup specific PCR was to apply these tests directly on footrot lesion samples to make it a rapid diagnostic test for field samples. The sensitivity of the test on lesion samples was found to be very low. To try and improve the sensitivity an overnight or four days old pre-enrichment culture in broth was tested but was found to be no better than direct PCR. The immuno-magnetic capture method which improved the sensitivity of pure culture samples by 10 -100 fold also had very low sensitivity with lesion samples. However, this drawback can be overcome by picking up colonies from 4 days old lesion cultures on hoof agar (HA) plates for serogroup specific multiplex PCR. If the colonies are too small/ too few on the lesion cultures these can be sub cultured onto a quarter of 4 percent HA plates and then used for the PCR test which also reduces the time taken for serogrouping at least by 2 weeks. The other advantage is that individual colonies do not need to be isolated. A PCR test can be done on pooled colonies just as well and can be used to identify all serogroups present in the sample. Serogroup specific PCR is much faster and is more sensitive and accurate than slide agglutination tests which take 3 to 4 weeks to complete. Multiplex PCR makes it easier to detect different serogroups in a sample with a maximum of 3 PCR tests. Serogroup specific multiplex PCR will be a useful tool for footrot control based on specific vaccination. The difficulty in using the test on direct lesion swabs needs to be further looked into. There may be future advances in the application of PCR tests to clinical samples

    The Role of fimbrial antigens of Dichelobacter nodosus in diagnosis and pathogenesis of footrot

    Get PDF
    Studies presented in this thesis looked at developing new methods for the diagnosis of virulent footrot (VFR) in sheep and identification of serogroups of Dichelobacter nodosus, the principal causative agent of footrot. Earlier studies had shown that immunological memory response in sheep recovered from VFR can be aroused by natural or recurrent infection or by injection of outer membrane protein (OMP) antigens to be used as a retrospective diagnostic test for VFR. But OMP antigen was found to be non-specific in older animals. To overcome this non-specificity of OMP antigen in anamnestic response, pilus antigen was evaluated in a trial at Camden. The results of this trial indicated that antibodies to pilus antigen can be detected over time in a manner similar to OMP antibodies so a retrospective assessment of VFR status can be made by anamnestic test with pilus antigens. The anamnestic response to pilus was similar in character to OMP antigen but unlike OMP was highly specific. The response to anamnestic challenge with pilus was determined by severity of the lesions they had expressed, with severe lesions triggering the greater responses. However, there was variation between individuals, with some (6 of 46 with severe lesions) failing to respond. This individual variation is probably mediated genetically as is response to vaccination. This anamnestic test was tested in flocks of sheep in Nepal that had a history of VFR which had apparently been eradicated. That assessment, based on clinical findings, was confirmed by the uniformly negative results in the pilus anamnestic test applied to a representative sample of the population. This allowed a conclusion that the virulent strains of D. nodosus involved had been eliminated from these flocks. As mentioned in the preceding study pilus antigen was found to be very specific and ideal for retrospective diagnosis of virulent footrot with an anamnestic challenge ELISA test. However, serogroup specificity was seen as a disadvantage of using pilus antigen for the anamnestic test. The possibility of using multivalent pilus antigens was tested in another trial. These animals had been involved in a clinical expression experiment conducted by another research group and had a clinical and bacteriological history extending over more than 12 months. After these initial trials all these animals were treated for footrot and managed for 5 months as a single flock at Camden. These were then challenged with multivalent pilus antigen (serogroup A - I) as a single injection. The results obtained indicate that multivalent pilus anamnestic ELISA is equally effective as monovalent pilus. This has the added advantage that prior knowledge of the serogroups present in the flock is not required. It has the possibility of being used as an indirect test to check the presence of serogroups in a flock without doing the bacterial cultures. This test can identify most animals with pre-existing underrunning lesions (Scores of 3 or higher). However, the sensitivity and specificity of this test need to be tested extensively in flocks of known clinical history before it could be adopted as a routine test. As a key component of a larger study to determine the role of fimbrial genes (fimA and fimB) of D. nodosus in the pathogenesis of footrot using allelic exchange to disrupt these genes of a strain (serogroup G), the study presented in this thesis contributed a detailed characterisation of the resultant mutant and the wild strains and tested these strains for virulence in sheep. The results presented provided the first definitive evidence that the fimA gene is essential for virulence of D.nodosus in sheep. In vivo virulence testing of two fimA mutants showed that they were not able to establish any footrot whereas the wild type of the same strain produced virulent footrot in the same trial conducted under similar conditions. These mutant bacteria were not re-isolated from interdigital skin after in vivo challenge. This indicated that fimA mutant strains could not colonise the ovine foot, and the simplest and most likely explanation for these results was that colonisation of the interdigital skin and subsequent penetration of the stratum corneum requires the adhesive activity of type IV fimbriae. However, since these mutants also had altered ability to secrete extracellular proteases, and perhaps other as yet unknown extracellular proteins, the possibility of the involvement of these factors as major determinants of host colonisation or invasion cannot be excluded. Current methods for the identification of the serogroup of D. nodosus present in the bacterial population requires isolation of the organism and after purification by subculture, antigenic analysis with agglutination tests. This usually takes at least 3 to 4 weeks. With the objective of developing a rapid serogroup specific PCR assay, the basis of serogroup variation in D. nodosus localised in the fimbrial gene region was exploited. A common forward primer and 9 serogroup specific reverse primers were selected from the fimbrial gene sequences of the prototype strains. Analytical sensitivity of the serogroup specific primers on chromosomal DNA was similar to PCR tests in other bacterial species reported before. Immuno-magnetic bead capture PCR method was able to detect 5 to 10 cells in cell lysates. Specificity within and between the serogroups of D. nodosus was tested with all the prototype strains. They were found to be very specific to each serogroup and specific only to D. nodosus when tested with 84 commonly found bacterial strains or strains related to D. nodosus. To overcome the time delay in conducting 9 different amplifications to find out the prevalence of all possible serogroups in a flock multiplex PCR reactions with common forward primer and groups of 3, 4 and 5 reverse primers were successful in reducing the number of reactions to 2 (with groups of 4 and 5) or 3 (with groups of 3) primers. A drawback of the multiplex reaction was that if a template was 1000 times less concentrated that the others in the mixture it was not amplified but the margin for difference is very high. The main aim of developing rapid serogroup specific PCR was to apply these tests directly on footrot lesion samples to make it a rapid diagnostic test for field samples. The sensitivity of the test on lesion samples was found to be very low. To try and improve the sensitivity an overnight or four days old pre-enrichment culture in broth was tested but was found to be no better than direct PCR. The immuno-magnetic capture method which improved the sensitivity of pure culture samples by 10 -100 fold also had very low sensitivity with lesion samples. However, this drawback can be overcome by picking up colonies from 4 days old lesion cultures on hoof agar (HA) plates for serogroup specific multiplex PCR. If the colonies are too small/ too few on the lesion cultures these can be sub cultured onto a quarter of 4 percent HA plates and then used for the PCR test which also reduces the time taken for serogrouping at least by 2 weeks. The other advantage is that individual colonies do not need to be isolated. A PCR test can be done on pooled colonies just as well and can be used to identify all serogroups present in the sample. Serogroup specific PCR is much faster and is more sensitive and accurate than slide agglutination tests which take 3 to 4 weeks to complete. Multiplex PCR makes it easier to detect different serogroups in a sample with a maximum of 3 PCR tests. Serogroup specific multiplex PCR will be a useful tool for footrot control based on specific vaccination. The difficulty in using the test on direct lesion swabs needs to be further looked into. There may be future advances in the application of PCR tests to clinical samples

    Developing a Mobile App for Kids in Dzongkha Learning

    Get PDF
    The objective of this paper is to study about the interactive systems and designs that will help the development of the new Dzongkha learning app, Interactive Dzongkha Learning App for Kids. The following related systems and apps are reviewed and applied to achieve the objective. The App contains six basic levels: tsawadangpa, tsawanyipa, chacheynatshog, kaelden, soednamdraebu and guetshig which will cover the basic teaching of Dzongkha for the kids and the beginners. The Interactive Dzongkha Learning App for Kids will provide an easy and alternative way in learning Dzongkha besides the regular classroom teaching. The App will also be incorporated with quiz, which it will help learners verify their outcome

    Comparative study of the commonly used virulence tests for laboratory diagnosis of ovine footrot caused by Dichelobacter nodosus in Australia.

    Get PDF
    Footrot in sheep and goats is expressed as a spectrum of clinical entities ranging from benign, which is a self limiting interdigital dermatitis to highly virulent, in which severe under running of the horn of the hoof occurs. Interactions between the host, the virulence of the causative strain of Dichelobacter nodosus and environmental conditions determine the severity of the disease. Clinical diagnosis of virulent footrot, which a notifiable disease in some states of Australia, is not always straightforward. Therefore, the Gelatin Gel and Elastase tests for protease activity, and the intA PCR test for an inserted genetic element in D. nodosus are commonly used to support or to confirm a clinical diagnosis. A comparative study of these laboratory tests with a large number of samples collected from 12 flocks of sheep with clinically virulent footrot was conducted. Based on the elastase test, 64% of the isolates tested were classified as virulent compared to 91% on the gelatin gel test and 41% according to the intA test. The agreement between the elastase and the gelatin gel test was low (kappa =0.12) as were the agreements between other tests. Only about 21% of the isolates were virulent in all 3 tests. Therefore these tests on their own may not provide standard and reliable results and are likely to remain as supplementary tests for clinical diagnosis of the disease. Keywords: Footrot, virulence, elastase test, gelatin gel test, intA PCR test

    Multiple locus VNTR analysis highlights that geographical clustering and distribution of Dichelobacter nodosus, the causal agent of footrot in sheep, correlates with inter-country movements

    Get PDF
    Dichelobacter nodosus is a Gram-negative, anaerobic bacterium and the causal agent of footrot in sheep. Multiple locus variable number tandem repeat (VNTR) analysis (MLVA) is a portable technique that involves the identification and enumeration of polymorphic tandem repeats across the genome. The aims of this study were to develop an MLVA scheme for D. nodosus suitable for use as a molecular typing tool, and to apply it to a global collection of isolates. Seventy-seven isolates selected from regions with a long history of footrot (GB, Australia) and regions where footrot has recently been reported (India, Scandinavia), were characterised. From an initial 61 potential VNTR regions, four loci were identified as usable and in combination had the attributes required of a typing method for use in bacterial epidemiology: high discriminatory power (D > 0.95), typeability and reproducibility. Results from the analysis indicate that D. nodosus appears to have evolved via recombinational exchanges and clonal diversification. This has resulted in some clonal complexes that contain isolates from multiple countries and continents; and others that contain isolates from a single geographic location (country or region). The distribution of alleles between countries matches historical accounts of sheep movements, suggesting that the MLVA technique is sufficiently specific and sensitive for an epidemiological investigation of the global distribution of D. nodosus

    Cross-infection of virulent Dichelobacter nodosus between sheep and co-grazing cattle

    Get PDF
    AbstractDichelobacter nodosus is the main aetiological agent of ovine footrot and the bacterium has also been associated with interdigital dermatitis is cattle. The aim of this study was to investigate possible cross-infection of virulent D. nodosus between sheep and co-grazing cattle. Five farms, where sheep previously diagnosed with virulent D. nodosus were co-grazing with cattle for different periods of time, were included. The study sample consisted of 200 cows and 50 sheep. All cows were examined for the presence of interdigital dermatitis, and ten ewes, preferably with symptoms of footrot, had the footrot scores recorded. On each farm, the same ten ewes and ten cows were chosen for bacterial analyses. Swabs were analysed for D. nodosus by PCR and culturing. D. nodosus isolates were virulence-tested and assigned to serogroups by fimA variant determination. Biopsies were evaluated histopathologically and analysed by fluorescent in situ hybridization for D. nodosus, Treponema spp. and Fusobacterium necrophorum. D. nodosus defined as virulent by the gelatin gel test were isolated from 16 sheep from four farms and from five cows from two of the same farms. All five cows had interdigital dermatitis. Two of the cows stayed infected for at least eight months. By pulsed-field gel electrophoresis (PFGE), the isolates from the five cows were found to be genetically indistinguishable or closely related to isolates from sheep from the same farm. This indicates that cross-infection between sheep and cows have occurred

    Experimental infection of sheep with ovine and bovine Dichelobacter nodosus isolates

    Get PDF
    AbstractThe aim of this study was, under experimental conditions, to investigate infection of Norwegian White sheep with ovine and bovine isolates of Dichelobacter nodosus of varying virulence. In addition, the efficacy of gamithromycin as a treatment for the experimentally induced infections was examined. The study was performed as a single foot inoculation using a boot. Four groups, each with six lambs, were inoculated with four different challenge strains (Group 1: benign bovine strain; Group 2: virulent bovine strain; Group 3: benign ovine strain; Group 4: virulent ovine strain). The main criterion to determine that infection was transferred was that D. nodosus isolate was obtained by culture. After the trial all lambs were treated with gamithromycin. Clinical symptoms of footrot developed in all groups, and when removing the boots two weeks after challenge, D. nodosus was isolated from 5 of 24 experimental lambs. All lambs tested negative for D. nodosus by PCR within six weeks after treatment with gamithromycin. This study strongly indicates that D. nodosus isolates from both sheep and cattle can be transferred to sheep under experimental conditions. The study also indicates that gamithromycin may be effective against D. nodosus

    Interdigital dermatitis, heel horn erosion, and digital dermatitis in 14 Norwegian dairy herds

    Get PDF
    AbstractThe aim of this study was to assess infectious foot diseases, including identification and characterization of Dichelobacter nodosus and Treponema spp., in herds having problems with interdigital dermatitis (ID) and heel horn erosion (E) and in control herds expected to have few problems. We also wanted to compare diseased and healthy cows in all herds. The study included 14 dairy herds with a total of 633 cows. Eight herds had a history of ID and E, and 6 were control herds. All cows were scored for lameness, and infectious foot diseases on the hind feet were recorded after trimming. Swabs and biopsies were taken from the skin of 10 cows in each herd for bacterial analyses. In total, samples were taken from 34 cows with ID, 11 with E, 40 with both ID and E, and 8 with digital dermatitis (DD), and from 47 cows with healthy feet. Swabs were analyzed for identification and characterization of D. nodosus by PCR, culture, virulence testing, and serotyping. Biopsies were analyzed by fluorescent in situ hybridization regarding histopathology, identification, and characterization of Treponema spp., and identification of D. nodosus. Interdigital dermatitis was the most frequent foot disease, with a prevalence of 50.4% in problem herds compared with 26.8% in control herds. Heel horn erosion was recorded in 34.8% of the cows in problem herds compared with 22.1% in control herds. Dichelobacter nodosus was detected in 97.1% of the cows with ID, in 36.4% with E, in all cows with both ID and E, in all cows with DD, and in 66.0% of cows with healthy feet. All serogroups of D. nodosus except F and M were detected, and all isolates were defined as benign by the gelatin gel test. Treponema spp. were detected in 50.0% of the cows with ID, in 9.1% with E, in 67.5% with ID and E, in all cows with DD, and in 6.4% of those with healthy feet. In total, 6 previously described phylotypes (PT) of Treponema were detected: PT1, PT3, PT6, PT13, and PT15 in cows with ID, PT1 in a cow with E, and PT1, PT2, PT3, PT6, and PT13 in cows with both ID and E. One new phylotype (PT19) was identified. The epidermal damage score was higher but the difference in inflammatory response of the dermis was minor in cows with ID versus those with healthy feet. Fisher’s exact test revealed an association between ID and D. nodosus, and between ID and Treponema spp. Logistic regression revealed an association between both ID and E and dirty claws (odds ratios=1.9 and 2.0, respectively). Our study indicates that D. nodosus, Treponema spp., and hygiene are involved in the pathogenesis of ID
    corecore