211 research outputs found

    Surface Instability of Icicles

    Full text link
    Quantitatively-unexplained stationary waves or ridges often encircle icicles. Such waves form when roughly 0.1 mm-thick layers of water flow down the icicle. These waves typically have a wavelength of 1cm approximately independent of external temperature, icicle thickness, and the volumetric rate of water flow. In this paper we show that these waves can not be obtained by naive Mullins-Sekerka instability, but are caused by a quite new surface instability related to the thermal diffusion and hydrodynamic effect of thin water flow.Comment: 11 pages, 5 figures, Late

    Weak Transitions in A=6 and 7 Nuclei

    Get PDF
    The 6^6He beta decay and 7^7Be electron capture processes are studied using variational Monte Carlo wave functions, derived from a realistic Hamiltonian consisting of the Argonne v18v_{18} two-nucleon and Urbana-IX three-nucleon interactions. The model for the nuclear weak axial current includes one- and two-body operators with the strength of the leading two-body term--associated with Δ\Delta-isobar excitation of the nucleon--adjusted to reproduce the Gamow-Teller matrix element in tritium β\beta-decay. The measured half-life of 6^6. He is under-predicted by theory by \simeq 8%, while that of 7^7Be for decay into the ground and first excited states of 7^7Li is over-predicted by \simeq 9%. However, the experimentally known branching ratio for these latter processes is in good agreement with the calculated value. Two-body axial current contributions lead to a \simeq 1.7% (4.4%) increase in the value of the Gamow-Teller matrix element of 6^6He (7^7Be), obtained with one-body currents only, and slightly worsen (appreciably improve) the agreement between the calculated and measured half-life. Corrections due to retardation effects associated with the finite lepton momentum transfers involved in the decays, as well as contributions of suppressed transitions induced by the weak vector charge and axial current operators, have also been calculated and found to be negligible.Comment: 23 pages 8 tables. submitted to Phys. Rev.

    Innovation and HRM : absences and politics

    Full text link
    This article analyses the role of HRM practices in the implementation of an innovative cross-functional approach to new product development (concurrent engineering, CE) in Eurotech Industries. Contrary to CE methodology stipulations, and despite supportive conditions, HRM received scant attention in the implementation process. Organizational power and politics were clearly involved in this situation, and this article explores how their play created such HRM &lsquo;absences&rsquo;. The article builds on a four-dimensional view of power in order to provide a deeper understanding of the embedded, interdependent and political nature of HRM practice and innovation.<br /

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    Fish, docosahexaenoic acid and Alzheimer’s disease

    Get PDF
    Cognitive decline in the elderly, particularly Alzheimer’s disease (AD), is a major socio-economic and healthcare concern. We review here the literature on one specific aspect of diet affecting AD, that of the ω3 fatty acids, particularly the brain’s principle ω3 fatty acid – docosahexaenoic acid (DHA). DHA has deservedly received wide attention as a nutrient supporting both optimal brain development and for cardiovascular health. Our aim here is to critically assess the quality of the present literature as well as the potential of ω3 fatty acids to treat or delay the onset of AD. We start with a brief description of cognitive decline in the elderly, followed by an overview of well recognized biological functions of DHA. We then turn to epidemiological studies, which are largely supportive of protective effects of fish and DHA against risk of AD. However, biological studies, including blood and brain DHA analyses need careful interpretation and further investigation, without which the success of clinical trials with DHA may continue to struggle. We draw attention to some of the methodological issues that need resolution as well as an emerging mechanism that may explain how DHA could be linked to protecting brain function in the elderly

    Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing.

    Get PDF
    BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies

    Distinct clinical symptom patterns in patients hospitalised with COVID-19 in an analysis of 59,011 patients in the ISARIC-4C study

    Get PDF
    COVID-19 is clinically characterised by fever, cough, and dyspnoea. Symptoms affecting other organ systems have been reported. However, it is the clinical associations of different patterns of symptoms which influence diagnostic and therapeutic decision-making. In this study, we applied clustering techniques to a large prospective cohort of hospitalised patients with COVID-19 to identify clinically meaningful sub-phenotypes. We obtained structured clinical data on 59,011 patients in the UK (the ISARIC Coronavirus Clinical Characterisation Consortium, 4C) and used a principled, unsupervised clustering approach to partition the first 25,477 cases according to symptoms reported at recruitment. We validated our findings in a second group of 33,534 cases recruited to ISARIC-4C, and in 4,445 cases recruited to a separate study of community cases. Unsupervised clustering identified distinct sub-phenotypes. First, a core symptom set of fever, cough, and dyspnoea, which co-occurred with additional symptoms in three further patterns: fatigue and confusion, diarrhoea and vomiting, or productive cough. Presentations with a single reported symptom of dyspnoea or confusion were also identified, alongside a sub-phenotype of patients reporting few or no symptoms. Patients presenting with gastrointestinal symptoms were more commonly female, had a longer duration of symptoms before presentation, and had lower 30-day mortality. Patients presenting with confusion, with or without core symptoms, were older and had a higher unadjusted mortality. Symptom sub-phenotypes were highly consistent in replication analysis within the ISARIC-4C study. Similar patterns were externally verified in patients from a study of self-reported symptoms of mild disease. The large scale of the ISARIC-4C study enabled robust, granular discovery and replication. Clinical interpretation is necessary to determine which of these observations have practical utility. We propose that four sub-phenotypes are usefully distinct from the core symptom group: gastro-intestinal disease, productive cough, confusion, and pauci-symptomatic presentations. Importantly, each is associated with an in-hospital mortality which differs from that of patients with core symptoms

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection ar
    corecore