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Distinct clinical symptom 
patterns in patients hospitalised 
with COVID‑19 in an analysis 
of 59,011 patients in the ISARIC‑4C 
study
Jonathan E. Millar1, Lucile Neyton1, Sohan Seth2, Jake Dunning3,4, Laura Merson5,6, 
Srinivas Murthy7, Clark D. Russell8, Sean Keating9, Maaike Swets1,10, Carole H. Sudre11, 
Timothy D. Spector12, Sebastien Ourselin11, Claire J. Steves12, Jonathan Wolf13, 
Annemarie B. Docherty14, Ewen M. Harrison14, Peter J. M. Openshaw4, 
Malcolm G. Semple15*, J. Kenneth Baillie1* & ISARIC‑4C *

COVID‑19 is clinically characterised by fever, cough, and dyspnoea. Symptoms affecting other organ 
systems have been reported. However, it is the clinical associations of different patterns of symptoms 
which influence diagnostic and therapeutic decision‑making. In this study, we applied clustering 
techniques to a large prospective cohort of hospitalised patients with COVID‑19 to identify clinically 
meaningful sub‑phenotypes. We obtained structured clinical data on 59,011 patients in the UK (the 
ISARIC Coronavirus Clinical Characterisation Consortium, 4C) and used a principled, unsupervised 
clustering approach to partition the first 25,477 cases according to symptoms reported at recruitment. 
We validated our findings in a second group of 33,534 cases recruited to ISARIC‑4C, and in 4,445 
cases recruited to a separate study of community cases. Unsupervised clustering identified distinct 
sub‑phenotypes. First, a core symptom set of fever, cough, and dyspnoea, which co‑occurred with 
additional symptoms in three further patterns: fatigue and confusion, diarrhoea and vomiting, or 
productive cough. Presentations with a single reported symptom of dyspnoea or confusion were also 
identified, alongside a sub‑phenotype of patients reporting few or no symptoms. Patients presenting 
with gastrointestinal symptoms were more commonly female, had a longer duration of symptoms 
before presentation, and had lower 30‑day mortality. Patients presenting with confusion, with or 
without core symptoms, were older and had a higher unadjusted mortality. Symptom sub‑phenotypes 
were highly consistent in replication analysis within the ISARIC‑4C study. Similar patterns were 
externally verified in patients from a study of self‑reported symptoms of mild disease. The large scale 
of the ISARIC‑4C study enabled robust, granular discovery and replication. Clinical interpretation is 
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necessary to determine which of these observations have practical utility. We propose that four sub‑
phenotypes are usefully distinct from the core symptom group: gastro‑intestinal disease, productive 
cough, confusion, and pauci‑symptomatic presentations. Importantly, each is associated with an 
in‑hospital mortality which differs from that of patients with core symptoms.

Coronavirus-19 disease (COVID-19) is characterised by a triad of symptoms: cough, fever and dyspnoea. How-
ever, it is clear that COVID-19 is not a homogeneous clinical entity. Important biological differences exist 
between sub-phenotypes, as is seen in other forms of critical illness including  sepsis1,  pancreatitis2, and  dengue3. 
Remarkably, this is already evident for COVID-19: highly significant sub-group effects have been seen in trials 
demonstrating the efficacy of  dexamethasone4,5 and  tocilizumab6, and progress has been made to uncover their 
underlying  biology7. Similarly, genome-wide association studies have identified a genetic basis for differences 
in the host response to SARS-CoV-2  infection8.

The recognition of clinical similarities between patients is a fundamental unit of medical progress. Group-
ing patients enables us to select appropriate diagnostic tests, predict response to therapy, and to prognosticate. 
Symptoms of disease are the most basic characteristics available to clinicians for stratifying patients with any 
illness. Simple machine learning methods can reveal patterns in clinical  symptoms9 with diagnostic and thera-
peutic  relevance10.

The International Severe Acute Respiratory Infection Consortium Clinical Characterisation Study (ISARIC-
4C) is an ongoing study of patients admitted to more than 260 acute hospitals in the United Kingdom. We 
employed unsupervised machine learning techniques in a large, prospective cohort of patients with SARS-CoV-2, 
admitted during the ‘first wave’, to better characterise the symptoms of COVID-19 and to identify sub-phenotypes 
based on symptoms.

Results
For the initial cohort, we studied the first 33,468 patients enrolled to the ISARIC-4C study, of which 7,991 had 
fully missing symptom data and were excluded from our analysis (Figure S1). The baseline characteristics of 
included patients (n = 25,477) are detailed in Table S1. Overall, the median age was 73 (59–83) years and the 
majority of patients were male (n = 15,046 (59%)). On average, individuals presented to hospital 4 (1–8) days 
after the onset of symptoms.

Symptom prevalence and the relationship between symptoms. Cough was the most prevalent 
symptom (68.0%, 95% CI 67.5–68.6%), followed by fever (66.4%, 95% CI 65.8–67%), and dyspnoea (65.2%, 95% 
CI 64.6–65.8%) (Fig. 1a and Table S2). Furthermore, these were the only symptoms to be reported by more than 
half of participants. The prevalence of individual symptoms varied with age (Figure S2). Fever was less marked 
at the extremes of age, an observation which was also evident for dyspnoea, and, with the exception of those 
aged > 90 years, for cough. Similarly, rash and runny nose were limited mostly to those aged < 20 years, especially 
to those aged under 10 years. In sum, there were 4,335 unique symptom combinations in the cohort, the most 
frequent being fever, cough, and dyspnoea (n = 1,430 (5.6%)) (Fig. 1a).

To explore the relationships between symptoms, we fit an Ising model, employing L1-regularised logistic 
regression. The majority of symptoms exhibited some degree of conditional dependence with at least one other, 
however, there were several that occurred independently: skin ulcers, rash, bleeding, lymphadenopathy, ear 
pain, and conjunctivitis (Fig. 1b). All of which had a low prevalence (< 5%). Uniquely, confusion was negatively 
associated with cough, myalgia, sore throat, and diarrhoea. Groupings of symptoms with interconnected, positive 
conditional dependencies were appreciable from inspection of the network graph. To formalise communities, we 
used a short random walk algorithm. Excluding the 6 orphan symptoms, 6 distinct communities were identified. 
These include: core COVID-19 (fever, cough, and dyspnoea), upper respiratory, bronchospasm, gastrointestinal 
(GI), neurological, and non-specific viral symptom sets (Fig. 1b).

Symptom sub‑phenotype derivation. To identify symptom sub-phenotypes within the study cohort, we per-
formed unsupervised partitional clustering. An a priori assessment suggested that 7 clusters was the optimal 
solution by majority assessment. This combined the inflection points in the decline in total sum of squares and 
the rise in gap statistic, with the nearest peak in average silhouette width (Figure S3).

The patterns of symptoms within the seven clusters are shown in Fig. 2a. Based on the central (medoid) case, 
we characterised the sub-phenotypes as: core COVID-19 symptoms (fever, cough, and dyspnoea); core symptoms 
plus fatigue and confusion; productive cough; gastrointestinal (GI) symptoms; pauci-symptomatic (no single 
symptom being present in > 50% of the cluster membership); afebrile; and confusion. The core symptoms sub-
phenotype accounted for the largest number of patients (n = 9,364 (36.8%)) and the GI symptoms sub-phenotype 
the fewest (n = 1,327 (5.2%)). Measures of internal validity and stability are presented in Figure S4a.

Sub‑phenotype sensitivity analyses. To examine the implications of our handling of missing data, we performed 
a sensitivity analysis by clustering only cases with fully complete symptom data (n = 12,712 (49.9%)). This analy-
sis retained the cluster structure, except for the afebrile sub-phenotype, in which the medoid case exhibited 
dyspnoea alone (Figure S4b). The simple agreement between iterations was 89.2%, with a Cohen’s kappa of 0.86 
(p < 0.001). Patients with fully missing data (n = 7,991) were of a similar age (74 (59–84) years) and sex (57.6% 
male). We conducted three additional analyses to explore the contribution of; age, heterogeneity of symptom 
recording, and the time from symptom onset to study enrolment. For age, we replicated our clustering pipeline 
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in the subset of the primary cohort aged ≥ 70 years (Table S3. In this instance, in the absence of confusion as a 
discriminatory symptom, we remained able to retrieve the core, productive cough, GI symptoms, pauci-sympto-
matic, and afebrile sub-phenotypes. For heterogeneity of symptom recording, we grouped the clustered primary 
cohort by recruiting site (sites recruiting ≥ 50 patients, 122 sites, n = 24,279), and analysed the proportion of 
patients reporting each of the 9 most discriminatory symptoms by site (Figure S5. All, except for myalgia, had 
a co-efficient of variation < 0.35. Finally, for time from symptom onset to study enrolment, we divided the clus-
tered primary cohort into its deciles. We then visualised the proportion of cases assigned to each sub-phenotype 
per decile (Figure S6). All sub-phenotypes were present in each decile.

Sub‑phenotype replication. We replicated our clustering in two independent cohorts. First, we repeated our 
clustering approach on a cohort of patients enrolled to the ISARIC CCP-UK after those in the primary analysis 
and up until  7th July, 2020 (n = 35,446). Of these, 1,912 (5.4%) had fully missing symptom data and were excluded 
from analysis. Clustering returned identical sub-phenotypes, with the exception of the afebrile cluster, in which 
cough was no longer implicated (Figure  S7). This cluster was also reduced in relative size (14.2% to 6.7%). 
Second, our clustering approach was replicated in an outpatient cohort (COVID Symptom Study, n = 4,445). 
This study records several overlapping or closely associated symptoms. Despite differences in study design and 
population, similar sub-phenotypes are discernible, including GI (cluster 1), pauci-symptomatic (cluster 2), and 
confusion (cluster 5) (Figure S8).

Association of sub‑phenotypes with patient characteristics. Compared to the primary cohort average (73 years 
(59–83)), those in the GI symptoms sub-phenotype were younger (60 years (49–72)), while those in the core 
symptoms, fatigue, and confusion (79  years (70–85)) or confusion sub-phenotypes (82  years (75–88)), were 
older (Fig. 2b). The GI symptoms sub-phenotype also had the highest proportion of female patients (628 (47%)). 
These differences were accompanied by variations in the median time from symptom onset to hospital admis-
sion between sub-phenotypes (p < 0.001) (Fig. 3a), and similarly, in the burden of co-morbidity (Fig. 3b).

To quantify these differences, we used a multinomial logistic regression model. Taking the largest sub-
phenotype (core symptoms) as our reference, we included major demographic variables and co-morbidities 
in the analysis (Fig. 3c and Table S3). By comparison, those in the GI symptoms (RRR 0.66, 95% CI 0.60 to 
0.73, p < 0.001), afebrile (RRR 0.84, 95% CI 0.76 to 0.92, p < 0.001), confusion (RRR 0.79, 95% CI 0.70 to 0.90, 
p < 0.001), and pauci-symptomatic (RRR 0.78, 95% CI 0.72 to 0.86, p < 0.001) sub-phenotypes, were more likely 
to be female (Fig. 3c). Patients assigned to the productive cough sub-phenotype were more likely to suffer from 
chronic pulmonary diseases (RRR 2.07, 95% CI 1.84 to 2.33, p < 0.001) and asthma (RRR 1.56, 95% CI 1.37 to 
1.77, p < 0.001) (Fig. 3c).

Association between sub‑phenotype and outcome. Overall, the unadjusted in-hospital mortality was 35%, with 
24% having an incomplete hospital episode at the end of follow-up (a further 474 patients were excluded due 
to conflicting outcome data leaving 18,884 available for analysis). Outcomes, stratified by sub-phenotype, are 
detailed in Table  S1. To assess differences in mortality between sub-phenotypes, we first compared Kaplan–
Meier curves (log-rank test, p < 0.001) (Fig. 4a). For the largest sub-phenotype, core symptoms, unadjusted in-
hospital mortality was 33%. The lowest mortality was found in the GI symptoms sub-phenotype (18%) and the 
highest in the core, fatigue, and confusion sub-phenotype (53%). Subsequently, we used a Cox proportional 
hazards model to account for the influence of age and sex (Fig. 3b). Those in the core, fatigue, and confusion 
sub-phenotype remained at the highest risk of death when compared to those with core symptoms, (HR 1.26, 
95% CI 1.15–1.37, p < 0.001). However, membership of the confusion cluster was no longer associated with an 
increased risk of death (HR 0.92, 95% CI 0.83–1.02, p = 0.096). Those in the productive cough, GI, and pauci-
symptomatic sub-phenotypes continued to attract a lower risk of death (Fig. 4b). Given that there was evidence 
of variation in risk over time for some sub-phenotypes, we performed Restricted Mean Survival Time (RMST) 
analyses (Table S4). By this method, males in the core, fatigue, and confusion sub-phenotype had the poorest 
survival compared to core symptoms, mean survival difference at 30-days -1.9 days (95% CI -2.8—1.1).

Discussion
This study identifies distinct symptom sub-phenotypes in a large cohort of hospitalised patients with COVID-
19. These sub-phenotypes are internally robust and reproducible. This report also provides one of the largest 
datasets of symptom prevalence in hospitalised patients with COVID-19 to date. Knowledge of distinct symptom 
sub-phenotypes has potential importance for our understanding of COVID-19. Two groups in our analysis have 
distinct clinical trajectories: those presenting with GI symptoms, and those presenting with confusion. Those in 
the GI cluster tended to be younger, more likely female, presented to hospital later, and had a higher probability 
of survival. Conversely, those with confusion (with or without fever, cough, and dyspnoea), were older, presented 
earlier, and had poorer outcomes. These data may be important for refining risk-prediction at the time of hospital 
admission. Similarly, the identification of a sub-phenotype in which patients had few symptoms other than con-
fusion has implications for defining cases and for targeting testing, particularly in elderly patients. Importantly, 
these clusters have divergent outcomes from those with core COVID-19 symptoms.

The pooled symptom prevalences reported in large meta-analyses of independent  studies11,12 are broadly 
consistent with ours, considering the higher severity of illness and more advanced age in our cohort. However, 
the prevalence of GI symptoms and of confusion was higher in our study. In an enlarged international cohort 
study, which includes the patients used in this analysis, estimates of symptom prevalence were largely  similar13.

Several of our sub-phenotypes are consistent with patterns highlighted in isolation by observational stud-
ies. Confusion, as the predominant symptom, has been reported in older adults presenting to hospital with 
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COVID-1914–16. Similar to our findings, this pattern has been associated with a higher risk of in-hospital death. 
Likewise, the GI sub-phenotype identified by our study is reflective of an enteric form of COVID-19 described in 
various  cohorts17. Gastrointestinal infection occurred in  SARS18,  MERS19, and was reported in early descriptions 
of COVID-1920. Single-cell transcriptomic analysis from ileum and colon has demonstrated the ability of SARS-
CoV-2 to infect  enterocytes21. Consistent with our findings, observational studies of patients with predominant 
GI symptoms have associated this presentation with a milder course of illness and better  survival22.

These data may offer a method for predictive enrichment in clinical  trials23. Predictive enrichment based 
on sub-phenotypes is expected to perform best where causal relationships exist between fundamental biologi-
cal or genomic features of disease and the clinical manifestations of severe  illness24. Similar relationships have 
been described in conditions as diverse as  schizophrenia25 and  asthma26. Sub-phenotypes based on symptoms, 
may when combined with other clinical characteristics, offer a means of predictive enrichment in the absence 
of biochemically distinguishable sub-groups or in resource poor settings or where a highly pragmatic basis for 
study enrolment is employed.

This study has some limitations. First, symptoms were sought only at hospital admission, potentially dispos-
ing patients to recall bias given the time between symptom onset and presentation. Similarly, patients may have 
elected to describe symptoms at that time or the gamut of symptoms since the onset of illness. Additionally, a 
small number of symptoms now known to be associated with COVID-19, namely anosmia and  ageusia27, were not 
recorded. Therefore, these data may not be generalisable to individuals with milder disease who do not require 
admission to hospital. Second, the patients analysed in this study were admitted in the ‘first wave’ of COVID-
19, prior to the emergence of alternative variants of SARS-CoV-2, thus limiting its generalisability. However, 
large-scale analysis failed to find a difference in reported symptoms after the emergence of the B.1.1.7 variant 
in the  UK28. Third, our study had missing data. In handling missing symptom records, we sought to retain as 
much data as possible given its informative missingness. This approach was robust to a sensitivity analysis. For 
survival data this was more challenging, and several methods of analysis were employed to reduce the risk of 
bias. Fourth, a limitation of partitional clustering is the need to pre-specify the number of clusters. In a large, 
heterogeneous population, this requires investigators to strike a balance between parsimony and granularity. 
Each patient is unique, and there were 4,335 symptom combinations in our cohort; hence, the most granular 
clustering would reveal 4,335 distinct patterns of disease. Our purpose in grouping these patients is to reveal 
clinical patterns that will have practical utility. As we have argued previously, the question should not be "How 
many clusters exist?", but rather, "Which clusters are potentially useful?"24. The results of our clustering analysis 
may also have been confounded by structural issues in the data, heterogeneity of symptom recording and dif-
ferences in time from symptom onset to study enrolment being two examples. Where these were recognisable, 
we performed sensitivity analyses. Finally, statistical modelling in this study corrected for a limited number of 
co-variates. With respect to differences in patient characteristics and symptom cluster, it may be that unmodelled 
demographic or clinical variables account partially or wholly for the variations which we observed. Likewise, 
for survival analysis, we adjusted only for age and sex, both of which we know to have been largely complete and 
not subject to significant confounding. Additionally, for some clusters there was evidence of variation in risk of 
death with time. This violates the assumption of proportional hazards and may limit the interpretation of the 
log-rank test and hazard ratios. We attempted to defend against this violation by performing RMST analyses, 
which confirmed the directions of effect.

In summary, our study of 59,001 hospitalised patients with COVID-19 identified distinct symptom sub-
phenotypes whose character and outcome differed significantly from those with the core symptoms of COVID-
19. These observations improve our understanding of COVID-19 and have implications for clinical diagnosis, 
risk prediction, and future mechanistic and clinical studies.

Methods
Study design, setting, and population. The ISARIC Coronavirus Clinical Characterisation Consor-
tium (4C) study is an ongoing prospective cohort study, involving 260 acute hospital sites in England, Scotland, 
and Wales. The study builds on an international consensus protocol for investigation of new infectious diseases, 
the International Severe Acute Respiratory Infection Consortium/World Health Organisation Clinical Charac-
terisation Protocol (ISARIC/WHO CCP)29, designed to enable internationally harmonised clinical research dur-
ing  outbreaks30. The protocol, revision history, case report form, information leaflets, consent forms, and details 
of the Independent Data and Material Access Committee are available at https:// isari c4c. net. The UK study was 
approved by the South Central—Oxford C Research Ethics Committee (13/SC/0149) and by the Scotland A 
Research Ethics Committee (20/SS/0028). The study was conducted in accordance with the Declaration of Hel-
sinki 1964 and all its subsequent amendments. Informed consent to participate was obtained from all patients or 
an appropriate consultee. This study is reported in compliance with the TRIPOD  guidelines31.

Patients included in the primary cohort were admitted to hospital between  6th February and  8th May, 2020. 
Inclusion criteria were all patients admitted to a participating hospital with laboratory proven or clinically highly 
suspected SARS-CoV-2 infection. Reverse transcription-PCR was the sole method of testing available during 
the study period. In the original CCP, the inclusion of patients with clinically suspected infection reflects the 
design of this study as a preparedness protocol where laboratory tests may not be available, but in the context 
of this outbreak in the UK, site training emphasised the importance of enrolling only laboratory-confirmed 
cases. Patients who were admitted to hospital for an unrelated condition but who subsequently tested positive 
for SARS-CoV-2 were also included.

Data collection. Data were collected on a case report form, developed by ISARIC and WHO in advance of 
this outbreak. From admission, data were uploaded to an electronic database (REDCap, Vanderbilt University, 

https://isaric4c.net
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US; hosted by University of Oxford, UK). We recorded demographic details as well as patient co-morbidities, in-
hospital clinical course, treatments, and outcomes. The presence or absence of a pre-defined list of 25 symptoms 
was assessed at study enrolment. This was performed by research nurses and assistants, either by direct question-
ing or where this was not possible by review of electronic health records. Symptoms were: fever, cough, produc-
tive cough, haemoptysis, dyspnoea, wheeze, chest wall in-drawing, chest pain, fatigue, myalgia, joint pain, vom-
iting, diarrhoea, abdominal pain, headache, confusion, seizures, lymphadenopathy, ear pain, sore throat, runny 
nose, conjunctivitis, bleeding, rash, and skin ulceration. Similarly, the presence of pre-defined co-morbidities 
was recorded. These were: asthma, diabetes (type 1 and type 2), chronic cardiac disease, chronic haematological 
disease, chronic kidney disease, chronic neurological disease, chronic pulmonary disease (excluding asthma), 
dementia, HIV, malignancy, malnutrition, mild liver disease, moderate or severe liver disease, obesity, chronic 
rheumatological disease, and smoking history. Outcome data were collected for admission to critical care (Inten-
sive Care Unit or High Dependency Unit), the use of invasive mechanical ventilation (IMV), and in-hospital 
mortality.

Statistical analysis. Continuous data are summarised as median (inter-quartile range). Categorical data 
are summarized as frequency (percentage). Prevalence is reported as percentage (95% confidence interval). 
Confidence intervals were calculated for a binomial proportion using the Clopper-Pearson exact method. We 
analysed data using R (R Core Team, Version 4.0.0, Vienna, Austria). P values < 0.05 were deemed significant.

Missing data—Given the extraordinary circumstances in which this study was conducted there was a large 
amount of missing data. No attempt at multiple imputation was made. In respect of symptom data, in many cases 
the presence of a positive symptom(s) was recorded, with the remainder missing. Exploration of the structure 
of missing symptom data (Supplementary Figure S1) suggests that this did not occur at random. In such cases, 
missing symptoms were recoded as being absent i.e., recoded as ‘0’. Patients with fully missing data were excluded 
from the analysis.

Symptom network analysis—To explore the relationship between the 25 recorded symptoms we fit an Ising 
model, using L1-regularised logistic regression with model selection by Extended Bayesian Information cri-
teria (EBIC)32, using the R package IsingFit (version 0.3.1). A λ value of 10 was chosen to minimise spurious 
conditional dependencies. The λ value acts as a tuning parameter, when multiplied by the sum of squares of the 
coefficients in the model, to produce a ‘shrinkage’ penalty. The partition of symptoms into communities was 
formalised using a short random walks method, with the R package igraph (version 1.2.6)33.

Unsupervised partitional clustering—Symptom data for each patient, encoded as binary responses, were used 
to derive a Jaccard distance matrix. This was then supplied as the input to a k-medoids clustering algorithm. 
This is an unsupervised partitional algorithm that seeks to divide the sample into k clusters, where the arbitrary 
distance between any individual case and the case chosen as the centre of a cluster (medoid) is minimised. In 
this study we used a variation of this algorithm, Clustering for Large Applications (CLARA), with the R package 
cluster (version 2.1.0)34. CLARA, for the optimisation of computational runtime, performs iterations of k-medoids 
clustering on subsets of the data and selects the best performing result. We clustered 100 random sub-samples 
each consisting of approximately 10% of the analysed population (n = 2,500). Each sub-sample was used to 
select k medoid cases, after which every case in the dataset was assigned to the nearest medoid. The iteration in 
which the mean of the dissimilarities between cases and the nearest medoid was lowest was selected. Random 
sampling was performed deterministically to ensure consistency between our primary analysis and validation 
steps. Clustering was performed agnostic of patient demographics or outcome.

The optimal number of clusters to specify to the algorithm was derived from a ’majority’ assessment of three 
measures; total within sum of squares, average silhouette width, and gap  statistic35, in which a parsimonious 
solution was preferred. To assess the stability of clusters, we employed a non-parametric bootstrap-based strategy 
using the R package fpc (version 2.2.8)36. This generated 1000 new datasets by randomly drawing samples from 
the initial dataset with replacement and applying the same clustering technique to each. Clustering results were 
then compared for each cluster identified in the primary analysis and the most similar cluster identified for 
each random re-sampling. A mean value for the Jaccard coefficient, for the sum of the comparisons, was gener-
ated for each cluster present in the primary analysis. As a sensitivity analysis for our treatment of missing data, 
clustering was repeated on patients with only fully complete symptom data. Cluster allocations for individuals 
partitioned by both iterations were then compared using Cohen’s kappa and simple percentage agreement with 
the R package irr (version 0.84.1). We also performed sensitivity analyses for the effect of age, recruitment site, 
and time from symptom onset to study enrolment.

Replication. We replicated our clustering in two independent datasets, one internal and one external. Inter-
nally, we used symptom data for patients enrolled to ISARIC CCP-UK after those included in the primary cohort 
and until  7th July, 2020 (secondary cohort). These data were processed and analysed as for the primary cohort. 
Missing data were treated in the same fashion. Externally, our clustering strategy was replicated independently 
in a sub-sample of users from the COVID Symptom Study app (developed by Zoe Global Ltd. with input from 
scientists and clinicians from King’s College London and Massachusetts General Hospital). Individuals with 
confirmed SARS-CoV-2 laboratory results, registering healthy on the app, with symptom duration of more than 
7 days were included, considering the presentation at symptom peak to build the  clusteringy37.

Multinomial regression modelling. To quantify the relationship between demographic factors, co-morbidities, 
and cluster membership we built a multinomial logistic regression model with the R package nnet (version 
7.3.14). For binary variables, a missing value was assumed to correspond to the absence of a given co-morbidity. 
Individuals with missing values for age and sex were excluded from this analysis. The dependent variable was 
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symptom cluster. The independent variables were; sex, age (categorical), chronic cardiac disease, chronic pulmo-
nary disease, asthma, chronic kidney disease, chronic neurological disease, malignancy, chronic haematologi-
cal disease, HIV, chronic rheumatological disease, dementia, malnutrition, chronic liver disease, and diabetes. 
Results are summarised as relative risk ratio (RRR) and 95% CI. The average time from self-reported symptom 
onset to hospital admission in each cluster were compared using the Kruskal–Wallis test.

Survival analysis. To examine survival differences between symptom clusters we employed several methods. 
Kaplan–Meier curves for 30-day in-hospital mortality were calculated and compared using a log-rank test, 
with the R package survival (version 3.2.7). Individuals reported as being dead but with no outcome date were 
excluded. All individuals not reported as dead were presumed alive. Discharged individuals were retained within 
the at-risk set until the end of follow-up; thus, discharge was not a competing risk for death. Survival time was 
defined as the time in days between hospital admission and the reported outcome date. We then fitted a Cox pro-
portional hazards model to the data with the a priori inclusion of age and sex as co-variates, using the R package 
survival. Given the non-linear effect of age on the risk of death we fitted age with a penalised smoothing spline. 
Results are reported as hazard ratio (HR) and 95% CI. In anticipation that the risk of death per cluster varied 
over time, we also calculated restricted mean survival times at 30 days, insuring the analysis against violations of 
proportional hazards assumptions. This was performed with the R package survRM2 (version 1.0.3). Results are 
reported as mean survival difference (days) and 95% CI.
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