10 research outputs found

    Measuring and Modeling Stable Isotopes of Mobile and Bulk Soil Water

    Get PDF
    We thank Audrey Innes for support with the isotope analysis at University of Aberdeen for the Bruntland Burn and Krycklan sites, Johannes Tiwari (SLU) for the isotope sampling in Krycklan, Pernilla Löfvenius (SLU) for providing PET data for Krycklan, Pertti Ala-aho for providing snowmelt simulations for Krycklan, and Kimberely Janzen (University of Saskatoon) for soil water isotope analysis for the Dorset sites. The work at Krycklan was supported by KAW Branch-Points. We thank the European Research Council (ERC, project GA 335910 VeWa) for funding. We thank two anonymous reviewers and the associate editor for their suggestions and comments.Peer reviewedPublisher PD

    Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes

    Get PDF
    Funded by DFG research project “From Catchments as Organised Systems to Models based on Functional Units” (FOR 1Peer reviewedPublisher PDFPublisher PD

    Discharge and fate of biocide residuals to ephemeral stormwater retention pond sediments

    No full text
    Biocides used in paints and renders prevent algae and fungi growth but can wash off during wind-driven rain and enter urban environments. Retention ponds represent part of stormwater management that retain water and partly pollutants. However, it is poorly understood which percentage of biocides leached from facades reaches a pond and how efficiently biocides are retained inside ponds although biocides can have harmful environmental effects. Here, we combined measurements and modeling to address diffuse biocide loss and a pond's retention capacity in a delimited residential area of 3 ha, with detached houses connected to an ephemeral retention pond. Six stormwater events were sampled within 2 years and confirmed biocidal residuals at pond inflow. Model results revealed that during the sampled events only 11% of terbutryn leachate arrived at the pond while the major part of this biocide was diffusely lost in the residential area. Measured low terbutryn concentrations in the sediment (mean 2.6 ng g−1) confirmed this result. Model results suggested that approximately 50% of terbutryn reaching the pond were retained and degraded. Our results are site-specific but suggest that biocide retention in ponds is limited, environmental entry pathways are diverse and that biocide use should be limited at its source. HIGHLIGHTS Comparison of measured and modeled data suggests that diffuse losses are the major pathway (89%) of biocides.; Only 11% of leached terbutryn arrived at the stormwater retention pond where about half was retained while the remaining half spilled over into the sewage system.; Results imply diverse entry pathways of biocides and suggest measures at the source are best.

    Tracking water pathways in steep hillslopes by d18O depth profiles of soil water

    No full text
    Assessing temporal variations in soil water flow is important, especially at the hillslope scale, to identify mechanisms of runoff and flood generation and pathways for nutrients and pollutants in soils. While surface processes are well considered and parameterized, the assessment of subsurface processes at the hillslope scale is still challenging since measurement of hydrological pathways is connected to high efforts in time, money and personnel work. The latter might not even be possible in alpine environments with harsh winter processes. Soil water stable isotope profiles may offer a time-integrating fingerprint of subsurface water pathways. In this study, we investigated the suitability of soil water stable isotope (d18O) depth profiles to identify water flow paths along two transects of steep subalpine hillslopes in the Swiss Alps. We applied a one-dimensional advection–dispersion model using d18O values of precipitation (ranging from _24.7 to _2.9‰) as input data to simulate the d18O profiles of soil water. The variability of d18O values with depth within each soil profile and a comparison of the simulated and measured d18O profiles were used to infer information about subsurface hydrological pathways. The temporal pattern of d18O in precipitation was found in several profiles, ranging from _14.5 to _4.0‰. This suggests that vertical percolation plays an important role even at slope angles of up to 46_. Lateral subsurface flow and/or mixing of soil water at lower slope angles might occur in deeper soil layers and at sites near a small stream. The difference between several observed and simulated d18O profiles revealed spatially highly variable infiltration patterns during the snowmelt periods: The d18O value of snow (_17.7 ± 1.9‰) was absent in several measured d18O profiles but present in the respective simulated d18O profiles. This indicated overland flow and/or preferential flow through the soil profile during the melt period. The applied methods proved to be a fast and promising tool to obtain time-integrated information on soil water flow paths at the hillslope scale in steep subalpine slopes

    Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes

    No full text
    corecore