3,528 research outputs found

    Prehistoric exploitation of minerals resources. Experimentation and use-wear analysis of grooved stone tools from Grotta della Monaca (Calabria, Italy)

    Get PDF
    The Calabria region of Southern Italy is rich in mineralisation. Unfortunately, no consistent data are available about mineral exploitation in the later prehistoric periods. The Grotta della Monaca mine in Calabria is a prehistoric site that is characterised by the mineralisation of iron ores (such as goethite) and copper carbonates (malachite and azurite). For this reason, the site provides an exceptional opportunity to study a prehistoric mine in which several minerals were exploited during the late Neolithic and early Chalcolithic. In this study, we present the results of an experimental protocol and use-wear analysis conducted using macro-lithic tool replicas to extract mineral resources. The experimental test aimed at reconstructing the function of grooved stone tools found at Grotta della Monaca. Use-wear observation, through a combined low- and high-power approach on experimental and archaeological objects, allowed us to define different extraction techniques and methods of mineral treatments. These data enhance our understanding and reconstruction of the chaßne opératoires, economic choices, and cultural aspects that characterised prehistoric miners in Southern Italy

    First Report of Root and Collar Rot Caused by Fusarium tricinctum and Fusarium avenaceum on Carrot in France

    Get PDF
    In 2017, carrot (Daucus carota L.) seed production represented around 22% of the area devoted to the production of vegetable fine seeds. Since 2015, symptoms of root and collar rot have been observed in carrot seed parcels located in the Central Region, one of the most important production zone in France. Diseased plants became dried prematurely, compromising seed development. Depending on the year and the climatic conditions, the disease in a same field can be considered as epidemic (rate losses between 30 to 100% of plants in 2016) or can impact plants more sporadically (less than 10% in 2017 and 2018). Sixteen diseased carrot samples (Nantaise type) were collected from five fields of seed production in the Central Region: two fields in 2016 and 2017, one field in 2018. Seven fungal isolates, obtained from lesions, were grown on Potato Dextrose Agar (PDA) medium and incubated for one week at 20°C in darkness. From the colony top, fluffy mycelium pigmented in pink, red, purple or orange was observed, with a red color at the reverse. To induce sporulation, isolates were grown on Synthetischer NĂ€hrstoffarmer Agar (SNA) medium during three weeks at 24°C in near-UV radiations under a 12h-photoperiod. Four isolates (FT001, FT003, FT007, FT017) developed orange sporodochia with lunar or crescent-shaped macroconidia (40.3 ± 0.8 × 5.9 ± 0.1 ”m; n=90) and lime or pear-shaped microconidia (10.7 ± 0.2 × 7.7 ± 0.2 ”m; n=60), as described in Fusarium tricinctum (Leslie and Summerell 2006). Three isolates (FA001, FA002, FA006) developed orange sporodochia with sickle-shaped macroconidia (50.5 ± 1.1 × 5.0 ± 0.1 ”m; n= 60), but no microconidia, as observed in Fusarium avenaceum (Leslie and Summerell 2006). To confirm the identification, DNA was extracted from the mycelium of the seven isolates and molecular markers (ATP citrate lyase, ACL1; RNA polymerase II, RPB2) were used for PCR amplification (GrĂ€fenhan et al. 2011; O’Donnell et al. 2013). The ACL1 sequences from the seven field isolates (GenBank Accession numbers MK183788-MK183791; MK181528-MK181530) were 99-100% identical with the ACL1 sequence of a reference F. tricinctum isolate (query coverages 99-100%; E-values of 0.0) and a reference F. avenaceum isolate (query coverages 98-99%; E-values of 0.0) [respectively DAOM 235630 isolate, GenBank Acc. No. JX397813 and BBA64135 isolate, GenBank Acc. No. JX397768, Niessen et al. 2012]. Using RPB2, sequences from field isolates (GenBank Acc. No. MK183109-MK183115) were 98.5-99.9% identical with the RPB2 sequence of a reference F. tricinctum isolate (query coverages 96-100%; E-values of 0.0) and a reference F. avenaceum isolate (query coverages 95-100%; E-values of 0.0) [respectively MRC 1895 isolate, GenBank Acc. No. MH582113 and MRC 1413 isolate, GenBank Acc. No. MH582082, O’Donnell et al. 2018]. To confirm pathogenicity, FT001 and FA002 were inoculated on collars of 10-weeks old carrot plants in the greenhouse. Forty plants per isolate and 40 control plants were used. Ten microliters of a conidial suspension (105 conidia.mL-1) - or sterile water for the controls - were deposited at the collar, previously wounded using a scalpel blade. Necrotic lesions developed at 20 dpi (FT001) and at 30 dpi (FA002). Fusarium tricinctum and F. avenaceum were re-isolated from the lesions and identified by sequencing using ACL1 and RPB2 markers. No isolation of Fusarium was obtained from the controls. To our knowledge, this is the first report of F. tricinctum and F. avenaceum in carrot in France

    Fit for purpose : do we have the right tools to sustain NTD elimination?

    Get PDF
    Priorities for NTD control programmes will shift over the next 10-20 years as the elimination phase reaches the ‘end game’ for some NTDs, and the recognition that the control of other NTDs is much more problematic. The current goal of scaling up programmes based on preventive chemotherapy (PCT) will alter to sustaining NTD prevention, through sensitive surveillance and rapid response to resurgence. A new suite of tools and approaches will be required for both PCT and Intensive Disease Management (IDM) diseases in this timeframe to enable disease endemic countries to: 1. Sensitively and sustainably survey NTD transmission and prevalence in order to identify and respond quickly to resurgence. 2. Set relevant control targets based not only on epidemiological indicators but also entomological and ecological metrics and use decision support technology to help meet those targets. 3. Implement verified and cost-effective tools to prevent transmission throughout the elimination phase. Liverpool School of Tropical Medicine (LSTM) and partners propose to evaluate and implement existing tools from other disease systems as well as new tools in the pipeline in order to support endemic country ownership in NTD decision-making during the elimination phase and beyond

    Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>Evaluation of the diagnostic accuracy of stress perfusion cardiovascular magnetic resonance for the diagnosis of significant obstructive coronary artery disease (CAD) through meta-analysis of the available data.</p> <p>Methodology</p> <p>Original articles in any language published before July 2009 were selected from available databases (MEDLINE, Cochrane Library and BioMedCentral) using the combined search terms of magnetic resonance, perfusion, and coronary angiography; with the exploded term coronary artery disease. Statistical analysis was only performed on studies that: (1) used a [greater than or equal to] 1.5 Tesla MR scanner; (2) employed invasive coronary angiography as the reference standard for diagnosing significant obstructive CAD, defined as a [greater than or equal to] 50% diameter stenosis; and (3) provided sufficient data to permit analysis.</p> <p>Results</p> <p>From the 263 citations identified, 55 relevant original articles were selected. Only 35 fulfilled all of the inclusion criteria, and of these 26 presented data on patient-based analysis. The overall patient-based analysis demonstrated a sensitivity of 89% (95% CI: 88-91%), and a specificity of 80% (95% CI: 78-83%). Adenosine stress perfusion CMR had better sensitivity than with dipyridamole (90% (88-92%) versus 86% (80-90%), P = 0.022), and a tendency to a better specificity (81% (78-84%) versus 77% (71-82%), P = 0.065).</p> <p>Conclusion</p> <p>Stress perfusion CMR is highly sensitive for detection of CAD but its specificity remains moderate.</p

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies

    Refinement-based verification of sequential implementations of Stateflow charts

    Get PDF
    Simulink/Stateflow charts are widely used in industry for the specification of control systems, which are often safety-critical. This suggests a need for a formal treatment of such models. In previous work, we have proposed a technique for automatic generation of formal models of Stateflow blocks to support refinement-based reasoning. In this article, we present a refinement strategy that supports the verification of automatically generated sequential C implementations of Stateflow charts. In particular, we discuss how this strategy can be specialised to take advantage of architectural features in order to allow a higher level of automation.Comment: In Proceedings Refine 2011, arXiv:1106.348

    Characterization of fungal pathogens (Diaporthe angelicae and D. eres) responsible for umbel browning and stem necrosis on carrot in France

    Get PDF
    A collection of 102 Diaporthe isolates was compiled from lesions on carrot, parsley and wild Apiaceae species in France from 2010 to 2014. Molecular typing based on ITS rDNA sequences resulted in the identification of 85 D. angelicae and 17 D. eres isolates. Based on sequences of the 30 part of the IGS rDNA, intraspecific variability was analysed for 17 D. angelicae and 13 D. eres isolates from diverse plant species, locations in France, and plant tissues. The genetic diversity was greater for D. angelicae isolates than D. eres isolates. In vitro sensitivity of five D. angelicae and four D. eres isolates to each of nine fungicides was similar for isolates of both species, with a marked variation in fungicide sensitivity depending on the active ingredient. To assess the pathogenicity of D. angelicae and D. eres isolates on carrot, one isolate of each species was inoculated onto umbels in a controlled environment. Typical lesions were observed for both isolates. Carrot crop debris collected from a seed production field in France and placed in controlled conditions produced perithecia and ascospores typical of Diaporthe, that were further characterized molecularly as belonging to D. angelicae. Detection of Diaporthe species on seed lots from three carrot production fields in France was investigated. Both species were detected on seeds by conventional PCR assay, with a greater frequency for D. angelicae than D. eres (67% vs 33%, respectively). Overall, the results highlighted that umbel browning in carrot seed crops in France was mainly caused by D. angelicae
    • 

    corecore