296 research outputs found

    Bizonal cardiac engineered tissues with differential maturation features in a mid-throughput multimodal bioreactor

    Get PDF
    Functional three-dimensional (3D) engineered cardiac tissue (ECT) models are essential for effective drug screening and biological studies. Application of physiological cues mimicking those typical of the native myocardium is known to promote the cardiac maturation and functionality in vitro. Commercially available bioreactors can apply one physical force type at a time and often in a restricted loading range. To overcome these limitations, a millimetric-scalemicroscope-integrated bioreactor was developed to deliver multiple biophysical stimuli to ECTs. In this study, we showed that the single application of auxotonic loading (passive) generated a bizonal ECT with a unique cardiac maturation pattern. Throughout the statically cultured constructs and in the ECT region exposed to high passive loading, cardiomyocytes predominantly displayed a round morphology and poor contractility ability. The ECT region with a low passive mechanical stimulation instead showed both rat- and human-origin cardiac cell maturation and organization, as well as increased ECT functionality

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    Relative particle yield fluctuations in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    No full text
    First results on K/π\pi, p/π\pi and K/p fluctuations are obtained with the ALICE detector at the CERN LHC as a function of centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV. The observable Îœdyn\nu_{\rm dyn}, which is defined in terms of the moments of particle multiplicity distributions, is used to quantify the magnitude of dynamical fluctuations of relative particle yields and also provides insight into the correlation between particle pairs. This study is based on a novel experimental technique, called the Identity Method, which allows one to measure the moments of multiplicity distributions in case of incomplete particle identification. The results for p/π\pi show a change of sign in Îœdyn\nu_{\rm dyn} from positive to negative towards more peripheral collisions. For central collisions, the results follow the smooth trend of the data at lower energies and Îœdyn\nu_{\rm dyn} exhibits a change in sign for p/π\pi and K/p.First results on K/π\hbox {K}/\pi , p/π\hbox {p}/\pi and K/p fluctuations are obtained with the ALICE detector at the CERN LHC as a function of centrality in  Pb–Pb \text{ Pb--Pb } collisions at sNN=2.76 TeV\sqrt{s_\mathrm{{NN}}} =2.76\hbox { TeV} . The observable Îœdyn\nu _{\mathrm{dyn}} , which is defined in terms of the moments of particle multiplicity distributions, is used to quantify the magnitude of dynamical fluctuations of relative particle yields and also provides insight into the correlation between particle pairs. This study is based on a novel experimental technique, called the Identity Method, which allows one to measure the moments of multiplicity distributions in case of incomplete particle identification. The results for p/π\hbox {p}/\pi show a change of sign in Îœdyn\nu _{\mathrm{dyn}} from positive to negative towards more peripheral collisions. For central collisions, the results follow the smooth trend of the data at lower energies and Îœdyn\nu _{\mathrm{dyn}} exhibits a change in sign for p/π\hbox {p}/\pi and K/p

    Investigating charm production and fragmentation via azimuthal correlations of prompt D mesons with charged particles in pp collisions at s=13\mathbf {\sqrt{ s} = 13} TeV

    No full text
    International audienceAngular correlations of heavy-flavour and charged particles in high-energy proton–proton collisions are sensitive to the production mechanisms of heavy quarks and to their fragmentation as well as hadronisation processes. The measurement of the azimuthal-correlation function of prompt D mesons with charged particles in proton–proton collisions at a centre-of-mass energy of s=13\sqrt{s} = 13 TeV with the ALICE detector is reported, considering D0\mathrm D^{0} , D+\mathrm D^{+} , and D∗+\mathrm D^{*+} mesons in the transverse-momentum interval 30.33 0.3 GeV/cc and pseudorapidity ∣η∣<0.8|\eta | < 0.8. This measurement has an improved precision and provides an extended transverse-momentum coverage compared to previous ALICE measurements at lower energies. The study is also performed as a function of the charged-particle multiplicity, showing no modifications of the correlation function with multiplicity within uncertainties. The properties and the transverse-momentum evolution of the near- and away-side correlation peaks are studied and compared with predictions from various Monte Carlo event generators. Among those considered, PYTHIA8 and POWHEG+PYTHIA8 provide the best description of the measured observables. The obtained results can provide guidance on tuning the generators

    Hypertriton production in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The study of nuclei and antinuclei production has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. The first measurement of the production of 3ΛH in p-Pb collisions at sNN−−−√ = 5.02 TeV is presented in this Letter. Its production yield measured in the rapidity interval −1<y<0 for the 40% highest multiplicity p-Pb collisions is dN/dy=[6.3±1.8(stat.)±1.2(syst.)]×10−7. The measurement is compared with the expectations of statistical hadronisation and coalescence models, which describe the nucleosynthesis in hadronic collisions. These two models predict very different yields of the hypertriton in charged particle multiplicity environments relevant to small collision systems such as p-Pb and therefore the measurement of dN/dy is crucial to distinguish between them. The precision of this measurement leads to the exclusion with a significance larger than 6.9σ of some configurations of the statistical hadronization model, thus constraining the theory behind the production of loosely bound states at hadron colliders

    Inclusive quarkonium production in pp collisions at √s = 5.02 TeV

    No full text
    This article reports on the inclusive production cross section of several quarkonium states, J/ψ, ψ(2S), ΄(1S), ΄(2S), and ΄(3S), measured with the ALICE detector at the LHC, in pp collisions at s√=5.02 TeV. The analysis is performed in the dimuon decay channel at forward rapidity (2.5<y<4). The integrated cross sections and transverse-momentum (pT) and rapidity (y) differential cross sections for J/ψ, ψ(2S), ΄(1S), and the ψ(2S)-to-J/ψ cross section ratios are presented. The integrated cross sections, assuming unpolarized quarkonia, are: σJ/ψ(pT<20 GeV/c) = 5.88 ± 0.03 ± 0.34 ÎŒb, σψ(2S)(pT<12 GeV/c) = 0.87 ± 0.06 ± 0.10 ÎŒb, σ΄(1S)(pT<15 GeV/c) = 45.5 ± 3.9 ± 3.5 nb, σ΄(2S)(pT<15 GeV/c) = 22.4 ± 3.2 ± 2.7 nb, and σ΄(3S)(pT<15 GeV/c) = 4.9 ± 2.2 ± 1.0 nb, where the first (second) uncertainty is the statistical (systematic) one. For the first time, the cross sections of the three ΄ states, as well as the ψ(2S) one as a function of pT and y, are measured at s√=5.02 TeV at forward rapidity. These measurements also significantly extend the J/ψ pT reach and supersede previously published results. A comparison with ALICE measurements in pp collisions at s√=2.76, 7, 8, and 13 TeV is presented and the energy dependence of quarkonium production cross sections is discussed. Finally, the results are compared with the predictions from several production models

    Suppression of Λ(1520) resonance production in central Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    The production yield of the Λ(1520) baryon resonance is measured at mid-rapidity in Pb-Pb collisions at sNN−−−√ = 2.76 TeV with the ALICE detector at the LHC. The measurement is performed in the Λ(1520)→pK− (and charge conjugate) hadronic decay channel as a function of the transverse momentum (pT) and collision centrality. The pT-integrated production rate of Λ(1520) relative to Λ in central collisions is suppressed by about a factor of 2 with respect to peripheral collisions. This is the first observation of the suppression of a baryonic resonance at the LHC and the first 3σ evidence of Λ(1520) suppression within a single collision system. The measured Λ(1520)/Λ ratio in central collisions is smaller than the value predicted by the statistical hadronisation model calculations. The shape of the measured pT distribution and the centrality dependence of the suppression are reproduced by the EPOS3 Monte Carlo event generator. The measurement adds further support to the formation of a dense hadronic phase in the final stages of the evolution of the fireball created in heavy-ion collisions, lasting long enough to cause a significant reduction in the observable yield of short-lived resonances

    Measurements of the groomed and ungroomed jet angularities in pp collisions at √s = 5.02 TeV

    No full text
    The jet angularities are a class of jet substructure observables which characterize the angular and momentum distribution of particles within jets. These observables are sensitive to momentum scales ranging from perturbative hard scatterings to nonperturbative fragmentation into final-state hadrons. We report measurements of several groomed and ungroomed jet angularities in pp collisions at s√=5.02 TeV with the ALICE detector. Jets are reconstructed using charged particle tracks at midrapidity (|η|<0.9). The anti-kT algorithm is used with jet resolution parameters R=0.2 and R=0.4 for several transverse momentum pch jetT intervals in the 20−100 GeV/c range. Using the jet grooming algorithm Soft Drop, the sensitivity to softer, wide-angle processes, as well as the underlying event, can be reduced in a way which is well-controlled in theoretical calculations. We report the ungroomed jet angularities, λα, and groomed jet angularities, λα,g, to investigate the interplay between perturbative and nonperturbative effects at low jet momenta. Various angular exponent parameters α=1, 1.5, 2, and 3 are used to systematically vary the sensitivity of the observable to collinear and soft radiation. Results are compared to analytical predictions at next-to-leading-logarithmic accuracy, which provide a generally good description of the data in the perturbative regime but exhibit discrepancies in the nonperturbative regime. Moreover, these measurements serve as a baseline for future ones in heavy-ion collisions by providing new insight into the interplay between perturbative and nonperturbative effects in the angular and momentum substructure of jets. They supply crucial guidance on the selection of jet resolution parameter, jet transverse momentum, and angular scaling variable for jet quenching studies

    Global polarization of ΛΛˉ\Lambda \bar \Lambda hyperons in Pb-Pb collisions at sNN\sqrt {s_{NN}} = 2.76 and 5.02 TeV

    No full text
    International audienceThe global polarization of the Λ\Lambda and Λ‟\overline\Lambda hyperons is measured for Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 and 5.02 TeV recorded with the ALICE at the LHC. The results are reported differentially as a function of collision centrality and hyperon's transverse momentum (pTp_{\rm{T}}) for the range of centrality 5-50%, 0.5<pT<50.5 < p_{\rm{T}} <5 GeV/cc, and rapidity ∣y∣<0.5|y|<0.5. The hyperon global polarization averaged for Pb-Pb collisions at sNN\sqrt{s_{\rm{NN}}} = 2.76 and 5.02 TeV is found to be consistent with zero, ⟹PH⟩\langle P_{\rm{H}}\rangle (%) ≈\approx 0.01 ±\pm 0.06 (stat.) ±\pm 0.03 (syst.) in the collision centrality range 15-50%, where the largest signal is expected. The results are compatible with expectations based on an extrapolation from measurements at lower collision energies at RHIC, hydrodynamical model calculations, and empirical estimates based on collision energy dependence of directed flow, all of which predict the global polarization values at LHC energies of the order of 0.01%
    • 

    corecore