55 research outputs found

    Pre-admission interventions to improve outcome after elective surgery-protocol for a systematic review

    Get PDF
    BACKGROUND: Poor physical health and fitness increases the risk of death and complications after major elective surgery. Pre-admission interventions to improve patients’ health and fitness (referred to as prehabilitation) may reduce postoperative complications, decrease the length of hospital stay and facilitate the patient’s recovery. We will conduct a systematic review of RCTs to examine the effectiveness of different types of prehabilitation interventions in improving the surgical outcomes of patients undergoing elective surgery. METHODS: This review will be conducted and reported according to the Cochrane and PRISMA reporting guidelines. MEDLINE, EMBASE, CENTRAL, CINAHL, PsycINFO, ISI Web of Science and clinical trial registers will be searched for any intervention administered before any elective surgery (including physical activity, nutritional, educational, psychological, clinical or multicomponent), which aims to improve postoperative outcomes. Reference lists of included studies will be searched, and grey literature including conference proceedings, theses, dissertations and preoperative assessment protocols will be examined. Study quality will be assessed using Cochrane’s risk of bias tool, and meta-analyses for trials that use similar interventions and report similar outcomes will be undertaken where possible. DISCUSSION: This systematic review will determine whether different types of interventions administered before elective surgery are effective in improving postoperative outcomes. It will also determine which components or combinations of components would form the most effective prehabilitation intervention. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD4201501919

    Prior consumption of a fat meal in healthy adults modulates the brain’s response to fat

    Get PDF
    Background: Consumption of fat is regulated by reward and homeostatic pathways, but no studies have examined the role of the intake of a high fat meal (HFM) on subsequent brain activation to oral stimuli. Objective: We evaluated how prior consumption of a HFM or water load (WL) modulates reward, homeostatic and taste brain responses to subsequent delivery of oral fat. Methods: A randomized 2-way crossover design (1-week apart) was used to compare prior consumption of a 250mL HFM (520kcal) (rapeseed oil (440kcal), emulsifier, sucrose, flavor cocktail) or non-caloric WL on brain activation to the delivery of repeated trials of an oral flavored no-fat control stimulus (CS) or flavored fat stimulus (FS) in 17 healthy adults (11 male, age=25±2 years, BMI=22.4±0.8kg/m2). Analyses tested differences in brain activation to the CS and FS, and baseline cerebral blood flow (CBF), following the HFM and WL. Individual’s plasma cholecystokinin (CCK) concentration following the HFM was correlated with their BOLD activation. Results: Prior consumption of the HFM compared to the WL led to decreased anterior insula taste activation in response to both the CS (36.3%,P<0.05) and FS (26.5%,P<0.05). The HFM caused reduced amygdala activation (25.1%,P<0.01) in response to the FS compared to the CS (fat-related satiety). Baseline CBF significantly reduced in taste (insula (5.7%,P<0.01)), homeostatic (hypothalamus (9.2%,P<0.01), thalamus (5.1%,P<0.05))), and reward areas (striatum (9.2%,P<0.01)) following the HFM. Individual’s plasma CCK concentration negatively correlated with brain activation in taste, oral somatosensory and reward areas. Conclusions: To reduce obesity, policy in industry is to lower the fat content of foods. Our results in healthy adults show that a HFM suppresses BOLD activation in taste and reward areas compared to a WL. This understanding will help inform the reformulation of reduced-fat foods that mimic the brain’s response to high fat counterparts, and guide future interventions to reduce obesity

    Physical activity and depression in adolescents: cross-sectional findings from the ALSPAC cohort

    Get PDF
    Purpose: Few studies have examined the association between physical activity (PA), measured objectively, and adolescent depressive symptoms. The aim of this study was to determine whether there is an association between objective measures of PA (total PA and time spent in moderate and vigorous PA (MVPA)) and adolescent depressive symptoms. Methods: Data on 2,951 adolescents participating in ALSPAC were used. Depressive symptoms were measured using the self-report Mood and Feelings Questionnaire (MFQ) (short version). Measures of PA were based on accelerometry. The association between PA and MFQ scores was modelled using ordinal regression. Results: Adolescents who were more physically active (total PA or minutes of MVPA) had a reduced odds of depressive symptoms [ORadj total PA (tertiles): medium 0.82 (95% CI: 0.69, 0.97); high 0.69 (95% CI: 0.57, 0.83)]; ORadj per 15 min MVPA: 0.92 (95% CI: 0.86, 0.98). In a multivariable model including both total PA and the percentage of time spent in MVPA, total PA was associated with depressive symptoms (ORadj total PA (tertiles): medium 0.82 (95% CI: 0.70, 0.98); high 0.70 (95% CI: 0.58, 0.85) but the percentage of time spent in MVPA was not independently associated with depressive symptoms [ORadj MVPA (tertiles) medium 1.05 (95% CI: 0.88, 1.24), high 0.91 (95% CI: 0.77, 1.09)]. Conclusions: The total amount of PA undertaken was associated with adolescent depressive symptoms, but the amount of time spent in MVPA, once total PA was accounted for, was not. If confirmed in longitudinal studies and randomised controlled trials, this would have important implications for public health messages.Nicola J. Wiles, Anne M. Haase, Debbie A. Lawlor, Andy Ness, Glyn Lewi

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.publishedVersio

    Bioassays to Monitor Taspase1 Function for the Identification of Pharmacogenetic Inhibitors

    Get PDF
    Background: Threonine Aspartase 1 (Taspase1) mediates cleavage of the mixed lineage leukemia (MLL) protein and leukemia provoking MLL-fusions. In contrast to other proteases, the understanding of Taspase1's (patho)biological relevance and function is limited, since neither small molecule inhibitors nor cell based functional assays for Taspase1 are currently available. Methodology/Findings: Efficient cell-based assays to probe Taspase1 function in vivo are presented here. These are composed of glutathione S-transferase, autofluorescent protein variants, Taspase1 cleavage sites and rational combinations of nuclear import and export signals. The biosensors localize predominantly to the cytoplasm, whereas expression of biologically active Taspase1 but not of inactive Taspase1 mutants or of the protease Caspase3 triggers their proteolytic cleavage and nuclear accumulation. Compared to in vitro assays using recombinant components the in vivo assay was highly efficient. Employing an optimized nuclear translocation algorithm, the triple-color assay could be adapted to a high-throughput microscopy platform (Z'factor = 0.63). Automated high-content data analysis was used to screen a focused compound library, selected by an in silico pharmacophor screening approach, as well as a collection of fungal extracts. Screening identified two compounds, N-[2-[(4-amino-6-oxo-3H-pyrimidin-2-yl)sulfanyl]ethyl]benzenesulfonamideand 2-benzyltriazole-4,5-dicarboxylic acid, which partially inhibited Taspase1 cleavage in living cells. Additionally, the assay was exploited to probe endogenous Taspase1 in solid tumor cell models and to identify an improved consensus sequence for efficient Taspase1 cleavage. This allowed the in silico identification of novel putative Taspase1 targets. Those include the FERM Domain-Containing Protein 4B, the Tyrosine-Protein Phosphatase Zeta, and DNA Polymerase Zeta. Cleavage site recognition and proteolytic processing of these substrates were verified in the context of the biosensor. Conclusions: The assay not only allows to genetically probe Taspase1 structure function in vivo, but is also applicable for high-content screening to identify Taspase1 inhibitors. Such tools will provide novel insights into Taspase1's function and its potential therapeutic relevance

    On Assessing Trustworthy AI in Healthcare. Machine Learning as a Supportive Tool to Recognize Cardiac Arrest in Emergency Calls

    Get PDF
    Artificial Intelligence (AI) has the potential to greatly improve the delivery of healthcare and other services that advance population health and wellbeing. However, the use of AI in healthcare also brings potential risks that may cause unintended harm. To guide future developments in AI, the High-Level Expert Group on AI set up by the European Commission (EC), recently published ethics guidelines for what it terms “trustworthy” AI. These guidelines are aimed at a variety of stakeholders, especially guiding practitioners toward more ethical and more robust applications of AI. In line with efforts of the EC, AI ethics scholarship focuses increasingly on converting abstract principles into actionable recommendations. However, the interpretation, relevance, and implementation of trustworthy AI depend on the domain and the context in which the AI system is used. The main contribution of this paper is to demonstrate how to use the general AI HLEG trustworthy AI guidelines in practice in the healthcare domain. To this end, we present a best practice of assessing the use of machine learning as a supportive tool to recognize cardiac arrest in emergency calls. The AI system under assessment is currently in use in the city of Copenhagen in Denmark. The assessment is accomplished by an independent team composed of philosophers, policy makers, social scientists, technical, legal, and medical experts. By leveraging an interdisciplinary team, we aim to expose the complex trade-offs and the necessity for such thorough human review when tackling socio-technical applications of AI in healthcare. For the assessment, we use a process to assess trustworthy AI, called 1Z-Inspection® to identify specific challenges and potential ethical trade-offs when we consider AI in practice.</jats:p

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.N. Kaffenberger helped with initial data compilation. Funding for authors and data collection and processing was provided by the EU Horizon 2020 project eLTER PLUS (grant agreement no. 871128); the German Federal Ministry of Education and Research (BMBF; 033W034A); the German Research Foundation (DFG FZT 118, 202548816); Czech Republic project no. P505-20-17305S; the Leibniz Competition (J45/2018, P74/2018); the Spanish Ministerio de Economía, Industria y Competitividad—Agencia Estatal de Investigación and the European Regional Development Fund (MECODISPER project CTM 2017-89295-P); Ramón y Cajal contracts and the project funded by the Spanish Ministry of Science and Innovation (RYC2019-027446-I, RYC2020-029829-I, PID2020-115830GB-100); the Danish Environment Agency; the Norwegian Environment Agency; SOMINCOR—Lundin mining & FCT—Fundação para a Ciência e Tecnologia, Portugal; the Swedish University of Agricultural Sciences; the Swiss National Science Foundation (grant PP00P3_179089); the EU LIFE programme (DIVAQUA project, LIFE18 NAT/ES/000121); the UK Natural Environment Research Council (GLiTRS project NE/V006886/1 and NE/R016429/1 as part of the UK-SCAPE programme); the Autonomous Province of Bolzano (Italy); and the Estonian Research Council (grant no. PRG1266), Estonian National Program ‘Humanitarian and natural science collections’. The Environment Agency of England, the Scottish Environmental Protection Agency and Natural Resources Wales provided publicly available data. We acknowledge the members of the Flanders Environment Agency for providing data. This article is a contribution of the Alliance for Freshwater Life (www.allianceforfreshwaterlife.org).Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore