25 research outputs found

    Performance measurement : challenges for tomorrow

    Get PDF
    This paper demonstrates that the context within which performance measurement is used is changing. The key questions posed are: Is performance measurement ready for the emerging context? What are the gaps in our knowledge? and Which lines of enquiry do we need to pursue? A literature synthesis conducted by a team of multidisciplinary researchers charts the evolution of the performance-measurement literature and identifies that the literature largely follows the emerging business and global trends. The ensuing discussion introduces the currently emerging and predicted future trends and explores how current knowledge on performance measurement may deal with the emerging context. This results in identification of specific challenges for performance measurement within a holistic systems-based framework. The principle limitation of the paper is that it covers a broad literature base without in-depth analysis of a particular aspect of performance measurement. However, this weakness is also the strength of the paper. What is perhaps most significant is that there is a need for rethinking how we research the field of performance measurement by taking a holistic systems-based approach, recognizing the integrated and concurrent nature of challenges that the practitioners, and consequently the field, face

    A Profile of Influenza Vaccine Coverage for 2019-2020:Database Study of the English Primary Care Sentinel Cohort

    Get PDF
    Background: Innovation in seasonal influenza vaccine development has resulted in a wider range of formulations becoming available. Understanding vaccine coverage across populations including the timing of administration is important when evaluatingvaccine benefits and risks.Objective: This study aims to report the representativeness, uptake of influenza vaccines, different formulations of influenza vaccines, and timing of administration within the English Primary Care Sentinel Cohort (PCSC).Methods: We used the PCSC of the Oxford-Royal College of General Practitioners Research and Surveillance Centre. We included patients of all ages registered with PCSC member general practices, reporting influenza vaccine coverage between September 1, 2019, and January 29, 2020. We identified influenza vaccination recipients and characterized them by age, clinicalrisk groups, and vaccine type. We reported the date of influenza vaccination within the PCSC by International Standard Organization (ISO) week. The representativeness of the PCSC population was compared with population data provided by the Office for National Statistics. PCSC influenza vaccine coverage was compared with published UK Health Security Agency’s national data. We used paired t tests to compare populations, reported with 95% CI.Results: The PCSC comprised 7,010,627 people from 693 general practices. The study population included a greater proportion of people aged 18-49 years (2,982,390/7,010,627, 42.5%; 95% CI 42.5%-42.6%) compared with the Office for National Statistics 2019 midyear population estimates (23,219,730/56,286,961, 41.3%; 95% CI 4.12%-41.3%; P<.001). People who are more deprived were underrepresented and those in the least deprived quintile were overrepresented. Within the study population, 24.7% (1,731,062/7,010,627; 95% CI 24.7%-24.7%) of people of all ages received an influenza vaccine compared with 24.2% (14,468,665/59,764,928; 95% CI 24.2%-24.2%; P<.001) in national data. The highest coverage was in people aged ≥65 years (913,695/1,264,700, 72.3%; 95% CI 72.2%-72.3%). The proportion of people in risk groups who received an influenza vaccine was also higher; for example, 69.8% (284,280/407,228; 95% CI 69.7%-70%) of people with diabetes in the PCSC received an influenza vaccine compared with 61.2% (983,727/1,607,996; 95% CI 61.1%-61.3%; P<.001) in national data. In the PCSC, vaccine type and brand information were available for 71.8% (358,365/498,923; 95% CI 71.7%-72%) of people aged 16-64 years and 81.9% (748,312/913,695; 95% CI 81.8%-82%) of people aged ≥65 years, compared with 23.6% (696,880/2,900,000) and17.8% (1,385,888/7,700,000), respectively, of the same age groups in national data. Vaccination commenced during ISO week 35, continued until ISO week 3, and peaked during ISO week 41. The in-week peak in vaccination administration was on Saturdays.Conclusions: The PCSC’s sociodemographic profile was similar to the national population and captured more data about risk groups, vaccine brands, and batches. This may reflect higher data quality. Its capabilities included reporting precise dates of administration. The PCSC is suitable for undertaking studies of influenza vaccine coverage

    A Profile of Influenza Vaccine Coverage for 2019-2020:Database Study of the English Primary Care Sentinel Cohort

    No full text
    Background: Innovation in seasonal influenza vaccine development has resulted in a wider range of formulations becoming available. Understanding vaccine coverage across populations including the timing of administration is important when evaluatingvaccine benefits and risks.Objective: This study aims to report the representativeness, uptake of influenza vaccines, different formulations of influenza vaccines, and timing of administration within the English Primary Care Sentinel Cohort (PCSC).Methods: We used the PCSC of the Oxford-Royal College of General Practitioners Research and Surveillance Centre. We included patients of all ages registered with PCSC member general practices, reporting influenza vaccine coverage between September 1, 2019, and January 29, 2020. We identified influenza vaccination recipients and characterized them by age, clinicalrisk groups, and vaccine type. We reported the date of influenza vaccination within the PCSC by International Standard Organization (ISO) week. The representativeness of the PCSC population was compared with population data provided by the Office for National Statistics. PCSC influenza vaccine coverage was compared with published UK Health Security Agency’s national data. We used paired t tests to compare populations, reported with 95% CI.Results: The PCSC comprised 7,010,627 people from 693 general practices. The study population included a greater proportion of people aged 18-49 years (2,982,390/7,010,627, 42.5%; 95% CI 42.5%-42.6%) compared with the Office for National Statistics 2019 midyear population estimates (23,219,730/56,286,961, 41.3%; 95% CI 4.12%-41.3%; P<.001). People who are more deprived were underrepresented and those in the least deprived quintile were overrepresented. Within the study population, 24.7% (1,731,062/7,010,627; 95% CI 24.7%-24.7%) of people of all ages received an influenza vaccine compared with 24.2% (14,468,665/59,764,928; 95% CI 24.2%-24.2%; P<.001) in national data. The highest coverage was in people aged ≥65 years (913,695/1,264,700, 72.3%; 95% CI 72.2%-72.3%). The proportion of people in risk groups who received an influenza vaccine was also higher; for example, 69.8% (284,280/407,228; 95% CI 69.7%-70%) of people with diabetes in the PCSC received an influenza vaccine compared with 61.2% (983,727/1,607,996; 95% CI 61.1%-61.3%; P<.001) in national data. In the PCSC, vaccine type and brand information were available for 71.8% (358,365/498,923; 95% CI 71.7%-72%) of people aged 16-64 years and 81.9% (748,312/913,695; 95% CI 81.8%-82%) of people aged ≥65 years, compared with 23.6% (696,880/2,900,000) and17.8% (1,385,888/7,700,000), respectively, of the same age groups in national data. Vaccination commenced during ISO week 35, continued until ISO week 3, and peaked during ISO week 41. The in-week peak in vaccination administration was on Saturdays.Conclusions: The PCSC’s sociodemographic profile was similar to the national population and captured more data about risk groups, vaccine brands, and batches. This may reflect higher data quality. Its capabilities included reporting precise dates of administration. The PCSC is suitable for undertaking studies of influenza vaccine coverage
    corecore